Paper | Title | Page |
---|---|---|
THPRB031 | Operational Performance of the Machine Protection Systems of the Large Hadron Collider During Run 2 and Lessons Learnt for the LIU/HL-LHC Era | 3875 |
|
||
The Large Hadron Collider (LHC) has successfully completed its second operational run of four years length in December 2018. Operation will be stopped during two years for maintenance and upgrades. To allow for the successful completion of the diverse physics program at 6.5 TeV, the LHC has been routinely operating with stored beam energies close to 300 MJ per beam during high intensity proton runs as well as being frequently reconfigured to allow for special physic runs and important machine developments. No significant damage has incurred to the protected accelerator equipment throughout the run thanks to the excellent performance of the various machine protection systems, however a number of important observations and new failure scenarios have been identified, which were studied experimentally as well as through detailed simulations. In this contribution, we provide an overview of the performance of the machine protection systems throughout Run 2 as well as the important lessons learnt that will impact consolidation actions and the upgrade of the machine protection systems for the LIU/HL-LHC era. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB031 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS036 | Quench Detection and Diagnostic Systems for the Superconducting Circuits for the HL-LHC | 4183 |
|
||
The High Luminosity LHC project (HL-LHC) will incorporate a new generation of superconducting elements such as high field superconducting magnets based on Nb3Sn conductors and MgB2 based high temperature superconducting links for magnet powering. In addition, the HL-LHC will also feature new generations of NbTi based magnets. The proper protection and diagnostics of those elements require the development of a new generation of integrated quench detection and data acquisition systems as well as novel methods for quench detection. The next generation of quench detection systems is to a large extent software defined and serves at the same time as high performance data acquisition system. The contribution will discuss the specific needs of HL-LHC in terms of quench detection and present recent results from tests with prototype magnets. The contribution will show the implementation of new quench detection methods such as current derivative sensors. Measures for increasing the system dependability and easing its maintenance will be explained, as well as the improved supervision architecture using Ethernet based field-bus systems for fast data transmission. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS036 | |
About • | paper received ※ 07 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS067 | Characterisation of the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Quadrupole Circuit | 4268 |
|
||
Funding: Work supported by the HL-LHC Project. The powering layout of the new HL-LHC Nb3Sn triplet circuits is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat, operated in superfluid helium and exposed to radiation. Therefore, the radiation hardness of different type of bypass diodes has been tested at low temperatures in CERN’s CHARM irradiation facility during the operational year 2018. The forward characteristics, the turn on voltage and the reverse blocking voltage of each diode were measured weekly at 4.2 K and 77 K, respectively, as a function of the accumulated radiation dose. The diodes were submitted to a dose close to 12 kGy and a 1 MeV equivalent neutron fluence of 2.2x1014,n/cm2. After the end of the irradiation campaign the annealing behaviour of the diodes was tested by increasing the temperature slowly to 300 K. This paper describes the experimental setup, the measurement procedure and discusses the results of the measurements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS067 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |