Paper |
Title |
Page |
MOPGW069 |
Recent Beam Performance Achievements with the Pb-Ion Beam in the SPS for LHC Physics Runs |
250 |
|
- H. Bartosik, R. Alemany-Fernández, T. Argyropoulos, T. Bohl, H. Damerau, V. Kain, G. Papotti, G. Rumolo, Á. Saá Hernández, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
In the SPS, which is the last accelerator in the LHC ion injector chain, multiple injections of the Pb-ion beam have to be accumulated. On this injection plateau the beam suffers from considerable degradation such as emittance growth and losses. This paper summarises the achievements on improving the beam parameters and maximising the performance of the Pb-ion beam for the LHC physics run in 2018. The results are discussed in view of the target beam parameters of the LHC injectors upgrade project, which is being deployed during the presently ongoing long shutdown.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW069
|
|
About • |
paper received ※ 12 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS106 |
Barrier Bucket Studies in the CERN PS |
1128 |
|
- M. Vadai, A. Alomainy
QMUL, London, United Kingdom
- H. Damerau
CERN, Geneva, Switzerland
|
|
|
Part of the residual beam loss during the Multi-Turn Extraction (MTE) of fixed target beams from the CERN Proton Synchrotron (PS) can be attributed to kicker magnets switching while the beam is coasting with the main RF systems off before extraction. Generating a barrier bucket to deplete the longitudinal line density of the coasting beam during the kicker rise time can reduce these losses. Beam tests have been performed with an existing Finemet cavity in the PS, which is normally operated as a wideband feedback kicker. To drive the cavity, a beam synchronous waveform synthesizer based on programmable logic has been developed. It produces a pre-distorted signal which ideally results in a single period sinusoidal voltage pulse with programmable parameters at the gap of the cavity, once or multiple times per revolution. The modelling of the behavior of the power amplifier and the cavity is essential to achieve an anti-symmetric voltage pulse with little pre- and post-pulse ripple. The design of the beam-synchronous waveform generator is presented together with results from initial beam studies with the created barrier buckets in the PS.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS106
|
|
About • |
paper received ※ 18 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPTS107 |
Beam Manipulations With Barrier Buckets in the CERN PS |
1132 |
SUSPFO120 |
|
|
- M. Vadai, A. Alomainy
QMUL, London, United Kingdom
- H. Damerau, S.S. Gilardoni, M. Giovannozzi, A. Huschauer
CERN, Geneva, Switzerland
|
|
|
A barrier bucket scheme is being considered to reduce losses during the Multi-Turn Extraction from the CERN Proton Synchrotron to the Super Proton Synchrotron for the fixed-target physics programme. For effective loss reduction, the extraction kicker has to be triggered during the gap at the time of the longitudinal barrier. Initial beam studies at injection energy and with low intensity beams allowed to fully qualify an existing wide-band cavity to generate one or multiple beam synchronous pulses per turn. Bunch-length stretching and shortening have been exercised with barriers moving in azimuth with respect to the beam. The encouraging results obtained at injection energy guided the implementation of a de-bunching manipulation at higher energy to move all bunches into a single barrier bucket. Beam measurements at a momentum of 14GeV/c, varying intensity and the width of the barrier, demonstrate that a quasi-constant longitudinal line density and an almost fully depleted gap can be achieved at highest intensities. The contribution summarises the results of the beam studies at high energy together with some observations related to the Multi-Turn Extraction.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS107
|
|
About • |
paper received ※ 18 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THXPLM1 |
LHC Injectors Upgrade Project: Towards New Territory Beam Parameters |
3385 |
|
- M. Meddahi, R. Alemany-Fernández, H. Bartosik, G. Bellodi, J. Coupard, H. Damerau, G.P. Di Giovanni, F.B. Dos Santos Pedrosa, A. Funken, B. Goddard, K. Hanke, A. Huschauer, V. Kain, A.M. Lombardi, B. Mikulec, S. Prodon, G. Rumolo, R. Scrivens, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
The LHC injectors Upgrade (LIU) project aims at increasing the intensity and brightness in the LHC injectors in order to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring high availability and reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2035). This requires extensive hardware modifications and new beam dynamics solutions in the entire LHC proton and ion injection chains: the new Linac4, the Proton Synchrotron Booster, the Proton Synchrotron the Super Proton Synchrotron together with the ion PS injectors (the Linac3 and the Low Energy Ion Ring). All hardware modifications will be implemented during the 2019-2020 CERN accelerators shutdown. This talk would analyze the various project phases, share the lessons learned, and conclude on the expected beam parameter reach, together with the related risks.
|
|
|
Slides THXPLM1 [20.029 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLM1
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|