Paper | Title | Page |
---|---|---|
MOPMP037 | Updated High-Energy LHC Design | 524 |
|
||
Funding: This work was supported in part by the European Commission under the HORIZON 2020 project ARIES no.730871, and by the Swiss Accelerator Research and Technology collaboration CHART. We present updated design parameters for a future High-Energy LHC. A more realistic turnaround time has led to a revision of the target peak luminosity, as well as a choice of a larger IP beta function, and longer physics fills. Pushed parameters of the Nb3Sn superconducting cable together with a modified layout of the 16 T dipole magnets resulted in revised field errors, updated dynamic-aperture simulations, and an associated re-evaluation of injector options. Collimators in the dispersion suppressors help achieve satisfactory cleaning performance. Longitudinal beam parameters ensure beam stability throughout the cycle. Intrabeam scattering rates and Touschek lifetime appear benign. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP037 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP039 | Developments in the Experimental Interaction Regions of the High Energy LHC | 532 |
|
||
Funding: Work supported by the Swiss institute for Accelerator Research and Technology , CHART. The High Energy LHC (HE-LHC) aims to collide 13.5 TeV protons in two high luminosity experiments and two low luminosity experiments. In the following, the recent updates in the two high luminosity experimental interaction regions (EIR) of the HE-LHC will be illustrated. These EIR aim to focus the beams to a β* of 0.45 m at the interaction point (IP) to achieve a lifetime integrated luminosity of 10 ab-1. On top of the triplet optics designed to achieve this, it will present energy deposition driven separation dipole designs, optics solutions for the matching section and dispersion suppressors as well as studies involving the integration into the lattice options. In particular it will outline geometric considerations, spurious dispersion suppression as well as results from dynamic aperture studies. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP039 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP005 | Field Quality for the Hadron Option of Future Circular Collider | 4397 |
|
||
Funding: This Research and Innovation Action project submitted to call H2020-INFRADEV-1-2014-1 receives funding from the European Union’s H2020 Framework Program under grant agreement No. 654305. The updated field quality for the baseline design option of the Nb3Sn dipoles for Future Circular Collider (FCC-hh) is discussed. The impact on the expected dynamic aperture is shown at injection and collision energy and the consequent non-linear correction schemes together with their integration in the optics are defined. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP005 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |