Author: Colson, W.B.
Paper Title Page
TUPRB103 The FHI FEL Upgrade Design 1903
 
  • A.M.M. Todd
    AMMTodd Consulting, Princeton Junction, New Jersey, USA
  • W.B. Colson
    NPS, Monterey, California, USA
  • M. De Pas, S. Gewinner, H. Junkes, G. Meijer, W. Schöllkopf, G. von Helden
    FHI, Berlin, Germany
  • S.C. Gottschalk
    STI Magnetics LLC, Woodinville, USA
  • J. Rathke, T. Schultheiss
    AES, Medford, New York, USA
  • L.M. Young
    LMY Technology, Lincolnton, Georgia, USA
 
  Since coming on-line in November 2013, the Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft (MPG) Free-Electron Laser (FEL) has provided intense, tunable infrared radiation to FHI user groups. It has enabled experiments in diverse fields ranging from bio-molecular spectroscopy to studies of clusters and nanoparticles, nonlinear solid-state spectroscopy, and surface science, resulting in 50 peer-reviewed publications so far. The MPG has now funded a significant upgrade to the original FHI FEL. A second short Rayleigh range undulator FEL beamline is being added that will permit lasing from < 5 microns to > 160 microns. Additionally, a 500 MHz kicker cavity will permit simultaneous two-color operation of the FEL from both FEL beamlines over an optical range of 5 to 50 microns by deflecting alternate 1 GHz pulses into each of the two undulators. We will describe the upgraded FHI FEL physics and engineering design and present the plans for two-color FEL operations in November 2020.
A.M.M. Todd, L.M. Young, J.W Rathke, W.B. Colson, T.J Schultheiss and S. Gottschalk are Consultants to the Fritz-Haber-Institut
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB103  
About • paper received ※ 02 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)