Paper | Title | Page |
---|---|---|
TUPTS050 | Design and Analysis of the Cold Cathode Ion Source for 200 MeV Superconducting Cyclotron | 2040 |
SUSPFO077 | use link to see paper's listing under its alternate paper code | |
|
||
SC200 is a superconducting isochronous cyclotron which generates 200 MeV, 400 nA proton beam for particle therapy. The cold-cathode-type Penning ion gauge (PIG) ion source for the internal ion source of SC200 has been selected as an alternative and preliminary designed. In this paper, design of ion source and test bench are demonstrated. Currently, the properties of ion source have been simulated for a variety of electric field distributions and magnetic field strengths. The secondary electron emission in electromagnetic field has been simulated. It provides reference for the optimization design of arc chamber. In addition, the sample of cold-cathode-type ion source has been tested on the test bench and extracted beam intensity has been measured over 200 μA. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS050 | |
About • | paper received ※ 30 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB030 | Commissioning of RF System of the 200 MeV Proton Cyclotron | 2877 |
|
||
Funding: (1) National Natural Science Foundation of China under grant No. 11775258, 11575237; (2) International Sci-entific and Technological Cooperation Project of An-hui (grant No. 1704e1002207). The SC200 superconducting accelerator which is designed for proton therapy is currently under con-struction. The RF (Radio Frequency) system has been designed and constructed as a subsystem of the SC200. To verify the stability of the RF system, a high-power feeding test was performed for the cavity. This paper mainly reports on the overview of RF systems and the prelimary high-power commissioning, as well as the problems found and improvements made during the commissioning process. The results show that the RF system has initially achieved the designed goal, and each loop (amplitude, tuning, phase) can work effec-tively. The cavity can operate in a ~50 kW continuous wave state. Next, the formal RF conditioning will be carried out after the complete assembly of cyclotron, so as to confirm the cavity can run smoothly under 80 kW, which is part of the whole commissioning process. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB030 | |
About • | paper received ※ 22 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMP029 | Design Study of a Compact Superconducting Cyclotron SC240 for Proton Therapy | 3506 |
|
||
Funding: National Natural Science Foundation of China under grant No. 11775258 & 11575237; International Scientific and Technological Co-operation Project of Anhui (grant No. 1704e1002207). A compact AVF cyclotron of 240 MeV is under-designed for proton therapy. In order to reduce the size, the weight and operation cost, two superconducting coils are designed to implement the 2.35T central field. And the magnet weight is about 90 tons. The constant gap between the sectors is considered without deteriorating the beam stability. A dedicated design on extraction zone is performed to make the average field to close the isochronous field. The extraction efficiency is expected higher than 80%, by regulating the 1st harmonic field and arranging the extraction elements properly. In order to avoid the large scale of volume helium explosion in the quench, the low temperature superconducting coil using NbTi/Cu wire is cooled by 4K GM Cryocooler in a helium volume limiting design. The paper will present the physical design of this cyclotron. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPMP029 | |
About • | paper received ※ 17 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |