Author: Castillo Sosa, M.
Paper Title Page
MOPGW128 Simulation and Analysis of Wake Fields and Trapped RF Modes in Insertion Device Vacuum Chambers at the Canadian Light Source 414
 
  • E.J. Ericson, D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M.J. Boland, M. Castillo Sosa
    University of Saskatchewan, Saskatoon, Canada
  • D. Pelz
    RFS, Kilsyth, Australia
 
  Funding: CFI, NSERC, NRC, CIHR, the Province of Saskatchewan, WD, WESTGRID, Compute Canada, and the University of Saskatchewan
The Canadian Light Source (CLS) synchrotron operates with four in-vacuum insertion devices, three in-vacuum undulators, and one in-vacuum wiggler. Presently, each of the devices occupies half of a straight section. The wiggler is unique in our ring as it is both in-vacuum and shares a straight section with an in-vacuum undulator. We have observed gap dependent beam instabilities in the undulator located in the straight section. In order to better understand the problem, the cause of the instabilities was investigated using 3D electromagnetic modelling. First, the ’trapped’ RF modes (natural resonances) for this undulator chamber, their Q value, and their peak frequencies were analysed using Eigenmode simulation. Secondly, beam excitation of the Eigenmodes was simulated with the Wakefield solver. Herein we present the results of this electromagnetic modelling.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW128  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)