Paper | Title | Page |
---|---|---|
TUPGW088 | Removal and Installation Planning for the Advanced Light Source - Upgrade Project | 1609 |
|
||
The ALS-U project is a proposed upgrade to the Advanced Light Source (ALS) at Berkeley Lab that aims to deliver diffraction limited performance in the soft x-ray range. By lowering the horizontal emittance to about 70 pm rad, the brightness for soft x-rays will increase two orders of magnitude compared to the current ALS. The design utilizes a nine-bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper will describe the preliminary plans for the installation of the new three-bend achromat accumulator ring (AR) in the existing tunnel and for replacing the current storage ring with the new nine-bend achromat lattice. The AR will be installed during regular maintenance shutdowns while the ALS continues to operate. The SR will be replaced during a nine months installation period followed by three months of commissioning during the twelve darktime period. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW088 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW097 | Design Progress of ALS-U, the Soft X-ray Diffraction Limited Upgrade of the Advanced Light Source | 1639 |
|
||
Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The ALS-U project to upgrade the Advanced Light Source to a multi bend achromat lattice received CD-1 approval in 2018 marking the end of its conceptual design phase. The ALS-U design promises to deliver diffraction limited performance in the soft x-ray range by lowering the horizontal emittance to about 70 pm rad resulting in two orders of magnitude brightness increase for soft x-rays compared to the current ALS. The design utilizes a nine bend achromat lattice, with reverse bending magnets and on-axis swap-out injection utilizing an accumulator ring. This paper presents recent design progress of the accelerator, as well as new results of the mature R&D program. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW097 | |
About • | paper received ※ 21 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |