Paper | Title | Page |
---|---|---|
TUPMP036 | Results on the FCC-hh Beam Screen Sawtooth at the Kit Electron Storage Ring Kararesults on the Fcc-Hh Beam Screen Sawtooth at the Kit Electron Storage Ring Kara | 1323 |
|
||
Funding: * The European Circular Energy-Frontier Collider Study (EuroCirCol) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 654305. In the framework of the EuroCirCol collaboration (work package 4 "Cryogenic Beam Vacuum System"), the fabrication of the FCC-hh beam screen (BS) prototype has been carried out with the aim of testing it at room temperature on the Karlsruhe Institute of Technology (KIT) 2.5 GeV electron storage ring KARA (KArlsruhe Research Accelerator) light source. The BS prototype was tested on a beamline installed by the collaboration, named as BEam Screen TEstbench EXperiment (BESTEX). KARA has been chosen because its synchrotron radiation (SR) spectrum, photon flux and power match quite well the one foreseen for the 50+50 TeV FCC-hh proton collider. The BS prototype (2 m in length) was manufactured according to the base line design (BD) of the FCC-hh BS. It implements a saw-tooth profile designed to absorb the SR generated at the bending magnets. Also, a laser-ablated anti-electron cloud surface texturing [2] was applied at the BS inner walls. We present here the results obtained at BESTEX and the comparison of the results obtained during irradiation of the saw-tooth profile at different geometric configurations. This activity has been carried out in the framework of the EuroCirCol* collaboration (work package 4 "Cryogenic Beam Vacuum System"). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP036 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW016 | New Operation Regimes at the Storage Ring KARA at KIT | 1422 |
|
||
The storage ring Karlsruhe Research Accelerator (KARA) at KIT operates in a wide energy range from 0.5 to 2.5 GeV. Initially, the ring was designed to serve as a Light Source for synchrotron radiation facility ANKA. Since then different operation modes have been implemented at KARA: in particular, the double bend achromat (DBA) lattice with non-dispersive straight sections, the theoretical minimum emittance (TME) lattice with distributed dispersion, and different versions of low compaction factor optics with highly stretched dispersion function. Short bunches of a few ps pulse width are available at KARA. Low alpha optics have been tested and implemented in a wide operational range of the ring and are now routinely used at 1.3 GeV for studies of CSR-induced beam dynamics and THz bursting in the micro-bunching instability. Different non-linear effects, in particular, residual high order components of magnetic fields generated in insertion devices have been studied and cured. A new operation mode at high vertical tune implemented at KARA essentially improves beam performance during user operation as well as at low alpha regimes. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW016 | |
About • | paper received ※ 23 April 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPGW017 | Superconducting Undulator Coils with Period Length Doubling | 1426 |
|
||
Funding: Work supported by the German government in the BMBF-project Superconducting ’Insertion Device Technologies for Ultra-Low-Emittance Light Sources’ (05K12CK1) Only since few years it has been demonstrated experimentally that NbTi based superconducting undulators (SCUs) have a higher peak field on axis for the same gap and period length in operation with electron beam with respect to permanent magnet undulators (even the ones in vacuum and cooled to cryogenic temperatures). Another advantage of NbTi based SCUs with respect to permanent magnet devices is radiation hardness, widely demonstrated for NbTi magnets, which is and will become an increasingly important issue with the small gaps in the newest machines as round beam storage rings and FELs. Moreover, SCU technology allows switching of the period length by changing the current direction in one of separately powered subset of winding packages of the superconducting coils. This feature further broadens the energy range of the emitted photons, required by the different beamlines. To this end 0.5 m long superconducting undulator coils with switchable period length between 17 mm and 34 mm have been developed. In this contribution we describe the design and report on the quench tests, as well as on the magnetic field measurements. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW017 | |
About • | paper received ※ 25 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB015 | Cryogenic, in-Vacuum Magnetic Measurement Setup for Superconducting Undulators | 1709 |
|
||
The magnetic field quality has a strong impact on the performance of insertion devices (IDs) when installed in synchrotron light sources. Superconducting IDs have the advantage to produce a higher magnetic peak field for a given gap and period length than IDs assembled with permanent magnets. Before installation of a superconducting ID in a synchrotron light source it is of fundamental importance to characterize the magnetic properties by accurate field and field integral measurements. We follow this aim within our R&D program for superconducting undulators (SCUs). In this contribution, we describe the equipment and the challenges of a cryogenic, in vacuum measurement setup to perform magnetic measurements of the local field, the field integrals and the multipole components of in vacuum SCUs assembled in the final cryostat. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB015 | |
About • | paper received ※ 29 April 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |