Author: Carmignani, N.
Paper Title Page
MOPGW008 Transparent Injection for ESRF-EBS 78
 
  • S.M. White, N. Carmignani, M. Dubrulle, M. Morati, P. Raimondi
    ESRF, Grenoble, France
 
  The commissioning of the ESRF-EBS storage ring will start in December 2019 ultimately providing a horizontal emittance of 130 pm, 30 times lower than the present one. Due to the reduced beam lifetime top-up operation will be required for all operating modes. Transparent injection, i.e. with negligible perturbations on the stored beam, is necessary to allow continuous data acquisition for beam lines experiments. Several options have been considered at ESRF to reduce these perturbations down to a fraction of the rms beam size: i) new kickers power supplies with slow ramping time to facilitate active compensation are under development and will be implemented in the coming years ii) in parallel, long term solutions using non-linear kickers and longitudinal on-axis injection have been investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW008  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW005 Preparation of the EBS Beam Commissioning 1388
 
  • S.M. Liuzzo, N. Carmignani, A. Franchi, T.P. Perron, K.B. Scheidt, E.T. Taurel, L. Torino, S.M. White
    ESRF, Grenoble, France
 
  In 2020 the ESRF storage ring will be upgraded to a Hybrid Multi Bend Achromat (HMBA) lattice. The commissioning of the new ring will require dedicated tools, either updated from the existing ones or newly developed. Most of the software and procedures were tested on the existing storage ring before its decommissioning. In particular we present experiments on first-turn steering and beam accumulation, check of magnet polarity and calibration, and injection tuning. The use of a control-system simulator proved to be crucial for the debugging of the software and the development of the new control system, as far as beam measurements and manipulations are concerned.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW005  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW006 Measurements of the Momentum Compaction Factor of the ESRF Storage Ring 1392
 
  • N. Carmignani, W. De Nolf, A. Franchi, C. Sahle, L. Torino
    ESRF, Grenoble, France
  • B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
 
  In a storage ring, the momentum compaction factor can be obtained by measuring the variation of the beam energy as a function of the RF frequency. In this paper we present the measurement of the momentum compaction factor from two different methods. With the first, we measure the variation of the undulator spectra for different RF frequencies. With the second, we measure the variation of the hard x-rays flux produced by a dipole for different RF frequencies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW006  
About • paper received ※ 29 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)