Author: Brown, C.
Paper Title Page
MOPRB063 Longitudinal Tomography in a Scaling FFA 719
 
  • D.J. Kelliher, C. Brown, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • Y. Ishi, Y. Kuriyama, H. Okita, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • S.L. Sheehy
    JAI, Oxford, United Kingdom
 
  In a synchrotron the rate of acceleration is limited by the ramp rate of the bending field. There is no such constraint in a Fixed Field alternating gradient Accelerator (FFA), allowing a much higher repetition rate and novel modes of operation such as beam stacking. It is of interest to obtain a picture of the longitudinal phase space from experimental data in order to diagnose the response of the beam to various RF programmes. Longitudinal tomography, already well established in synchrotrons, involves reconstructing the phase space using bunch monitor data obtained for a sufficient number of turns in a synchrotron oscillation. Here we reconstruct the longitudinal phase space using data from the 150 MeV scaling FFA at KURNS, Osaka, Japan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB063  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS068 Progress on Design Studies for the ISIS II Upgrade 2075
 
  • J.-B. Lagrange, D.J. Adams, C. Brown, H.V. Cavanagh, I.S.K. Gardner, P.T. Griffin-Hicks, B. Jones, D.J. Kelliher, A.P. Letchford, S. Machida, B.G. Pine, C.R. Prior, C.T. Rogers, J.W.G. Thomason, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak, J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS, the spallation neutron source at the Rutherford Appleton Laboratory in the UK, uses a 50 Hz, 800 MeV proton RCS to provide a beam power of 0.2 MW, delivered in 0.4 us long pulses. Detailed studies are now under way for a major upgrade. Accelerator designs using FFAs, conventional accumulator and synchrotron rings are being considered for the required MW beam power. This paper summarises the scope of the different research incorporating results from recent target studies and user consultations. Preliminary results for Fixed Field Alternating gradient (FFA) rings and conventional rings located in the existing ISIS synchrotron hall are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS068  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS108 Emittance Exchange in MICE 3378
 
  • C. Brown
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • C.G. Whyte
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: STFC, NSF, DOE, INFN, CHIPP and more
The Muon Ionization Cooling Experiment, MICE, has demonstrated transverse emittance reduction through ionization cooling. Transverse ionization cooling can be used either to prepare a beam for acceleration in a neutrino factory or for the initial stages of beam cooling in a muon collider. Later stages of ionization cooling in the muon collider require the longitudinal emittance to be manipulated using emittance exchange and reverse emittance exchange, where emittance is exchanged from and to longitudinal phase space respectively. A wedge absorber within the MICE cooling channel has been used to experimentally demonstrate reverse emittance exchange in ionization cooling. Parameters for this test have been explored in simulation and applied to experimental configurations using a wedge absorber when collecting data in the MICE beam. This analysis of reverse emittance exchange is presented in detail.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS108  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)