Paper | Title | Page |
---|---|---|
MOPTS003 | Superconducting LINAC Design Upgrade in View of the 100 MeV MYRRHA Phase I | 837 |
|
||
Funding: Part of this work supported by the European Atomic Energy Community (EURATOM) H2020 Programme under grant agreement n°662186 (MYRTE project). The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100 MW Accelerator Driven System (ADS) by building a new flexible irradiation complex at Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton current of 4 mA in continuous wave operation, with an additional requirement for exceptional reliability. Supported by SCK•CEN and the Belgium government the project has entered in its phase I: which consists in the development and the construction of the linac first part, up to 100 MeV. We review the design updates of the superconducting linac, with its enhanced fault-tolerance capabilities. The linac capabilities at 100 MeV (Phase I) and 600 MeV (ADS operation) are exposed and discussed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS003 | |
About • | paper received ※ 23 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPGW004 | Wire Scanner for High Intensity Ion Beam* | 2466 |
SUSPFO007 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Part of this work supported by the European Atomic Energy Community (EURATOM) H2020 Program under grant agreement n°662186 (MYRTE project). The goal of the project is to develop a Wire-Scanner compatible with low energy - high intensity ion beams and adaptable to various beam chamber diameters. The purpose is to obtain the 2D beam profile by passing measurement wires through the beam. Thanks to a high speed passage of measurement wires, it allows to avoid "disrupting" the beam passage, and can be considered as a non-destructive diagnosis. Wires heating and measuring issues have been solved by using tungsten wires kept in tension by a mechanical system. All driving and signal measurements are performed by a PXI based system. The synchronization of the measurements is guaranteed by an analog input board recovering the wires current and the translator position, the latter being carried out by a laser sensor. Besides this technological aspect, an optimization algorithm for beam profile reconstruction from measured data under Gaussian hypothesis has been developed. The standalone system and first experimental results are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW004 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 18 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS006 | Modelization of an Injector With Machine Learning | 3096 |
|
||
Modern particle accelerator projects, such as MYRRHA, have very high stability and/or reliability requirements. To meet those, it is necessary to optimize or develop new methods for the control systems. One of the difficulties lies in the relatively long computation time of current beam dynamics codes. In this context, the very low computation time of neural network is of great attraction. However, a neural network has to be trained in order to be of any use. The training of a beam dynamic predictor uses a large dataset (experimental or simulated) that represents the dynamics over the parameter space of interest. Therefore, choosing the right training dataset is crucial for the quality of the neural network predictions. In this work, a study on the sampling choice for the training data is performed to train a neural network to predict the transmission of a beam through a low energy beam transport line and a Radiofrequency Quadrupole. We show and discuss the results obtained on training data set to model the IPHI and MYRRHA injectors.
https://myrrha.be/ |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS006 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTS007 | MYRRHA 80 kW CW RF Coupler Design | 4115 |
|
||
MYRRHA [1] (Multi Purpose Hybrid Reactor for High Tech Applications) is an Accelerator Driven System (ADS) project. Its superconducting linac will provide a 600 MeV - 4 mA proton beam. The first project phase based on a 100 MeV linac is launched. The Radio-Frequency (RF) couplers have been designed to handle 80 kW CW at 352.2 MHz. This paper describes the thermal, mechanical and RF studies leading to the final design of the RF coupler. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPTS007 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |