Author: Bengtsson, J.
Paper Title Page
TUPGW075 Towards a Diffraction Limited Storage Ring 1573
 
  • J. Bengtsson
    DLS, Oxfordshire, United Kingdom
  • P.F. Tavares
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  A Lattice for a 500 m circ. Tunnel, based on First Principles & Best Practices is presented. Background: MAX-IV has made a "quantum leap" towards a Diffraction Limited Storage Ring (DLSR) by an Engineering-Science, i.e., Systems, Approach; leading to a Paradigm Shift(s): e.g. the Magnet Reference Radius is a Key Parameter, a Design Choice, that must be considered at an early stage for Robust Design. In addition, the pursuit of Systematic Benchmarks, MAX-I -> MAX-IV, has enabled the pursuit of Disruptive Technologies with Predictable Results. For example: Combined-Function Magnets (built-to-print) enabling an "IKEA Approach" (innovative, prompted by low-budget) like the use of Concrete Girders, Vacuum Requirements mitigated by NEG Coating, and Solid State Modulators providing a Reliable Injector by a Full-Energy Linac. Since "The Experiment" now has been done, Permanent Magnets, well understood for high-end Insertion Devices, provides another opportunity/step for a Next Generation. Besides, the Electricity Bill for Conventional Magnets is a significant part of the Operations Cost.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW075  
About • paper received ※ 20 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW079 Exploratory Lattice Design Studies for Diamond-II 1589
 
  • B. Singh, R. Bartolini, J. Bengtsson, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
 
  We pursue Robust Design of a Ring-Based Synchrotron Light Source as a System. In particular, the Design Phi-losophy is based on: ’ To Control the Nonlinear Dynamics: Control the Linear Optics. In particular, by: ’ Optimal Control of Natural Chromaticity. ’ ’-I Transformer’ between Chromatic Sextupoles for Unit Cell. ’ Higher-Order-Achromat for Super Period. In addition, by pushing the Requirements for Robust & Efficient Injection ’Upstream’, i.e., by considering On-Axis Injection, and by utilizing Reverse Bends (to trans-cend the reductionist Theoretical Minimum Emittance Cell), either: ’ the Natural Emittance can be reduced further, ’ or the Touschek Lifetime can be improved. Bottom line, a Design Choice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW079  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW095 Progress on a Novel 7BA Lattice for a 196-m Circumference Diffraction-Limited Soft X-Ray Storage Ring 1635
 
  • S.C. Leemann, F. Sannibale
    LBNL, Berkeley, California, USA
  • M. Aiba, A. Streun
    PSI, Villigen PSI, Switzerland
  • J. Bengtsson
    DLS, Oxfordshire, United Kingdom
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract No. DEAC02-05CH11231.
The ALS Upgrade to a diffraction-limited soft x-ray storage ring calls for ultralow emittance in a very limited circumference. In this paper we report on progress with a lattice based on a 7BA with distributed chromatic correction. This lattice relies heavily on longitudinal gradient bends and reverse bending in order to suppress the emittance, so that, despite having only seven bends, ultralow emittance can be achieved in addition to large dynamic aperture and momentum acceptance. An initial alternate 7BA lattice has been revised to relax magnet requirements as well as further increase off-energy performance and resilience to machine imperfections. We now demonstrate ±2.5 mm dynamic aperture including errors and calculate the effect of IBS to show that this lattice achieves 6 hours Touschek lifetime (at 500 mA, including errors) and a brightness of roughly 3x1021 ph/s/mm2/mrad2/0.1%BW at 1 keV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW095  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)