Author: Baudrenghien, P.
Paper Title Page
MOPGW084 Beam Loading Compensation for the Future Circular Hadron-Hadron Collider (FCC-hh) 301
 
  • I. Karpov, P. Baudrenghien
    CERN, Geneva, Switzerland
 
  The power consumption of the rf system can be minimised by optimising the cavity detuning and the loaded quality factor. In high-current accelerators, the presence of gaps in the filling results in a modulation of the cavity voltage along the ring (transient beam loading) and as a consequence a spread in the bunch parameters. In addition longitudinal coupled-bunch instabilities can appear, caused by the cavity impedance at the fundamental. Both issues can be mitigated by using an rf feedback around the amplifier and cavity, a technique used in many high intensity machines including the Large Hadron Collider (LHC). Compared to the LHC machine, the energy increase and the radiation loss for the Future Circular hadron-hadron Collider (FCC-hh) will be larger, resulting in a synchronous phase deviating significantly from 180 degrees. The solutions adopted for the LHC must therefore be revisited. This paper evaluates several beam loading compensation schemes for this machine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW084  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB082 The CERN SPS Low Level RF upgrade Project 4005
 
  • G. Hagmann, P. Baudrenghien, J.D. Betz, J. Egli, G. Kotzian, M. Rizzi, L. Schmid, A. Spierer, T. Włostowski
    CERN, Geneva, Switzerland
  • F.J. Galindo Guarch
    Universitat Politécnica de Catalunya, Barcelona, Spain
 
  The High Luminosity LHC project (HL-LHC) calls for the doubling of the beam intensity injected from the Super Proton Synchrotron (SPS). This is not possible with the present RF system consisting of four 200 MHz cavities. An upgrade was therefore launched, consisting of the installation of two more cavities during the machine shutdown in 2019-2020 (LS2). Installation of more cavities requires the installation of extra Low Level RF (LLRF) electronics. The present LLRF system consists of the original equipment installed in the 1970s, plus some additions dating from the late 1990s when the SPS was commissioned as LHC injector. The High-Power RF up-grade has motivated a complete renovation of the LLRF during LS2; use of a MicroTCA platform, use of a digital deterministic link for synchronization (the so-called White Rabbit), use of an absolute clock for the processing, new algorithms for reducing the cavity impedance, and a complete re-design of the beam control loops and slip-stacking.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB082  
About • paper received ※ 13 May 2019       paper accepted ※ 19 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)