Paper |
Title |
Page |
MOPGW069 |
Recent Beam Performance Achievements with the Pb-Ion Beam in the SPS for LHC Physics Runs |
250 |
|
- H. Bartosik, R. Alemany-Fernández, T. Argyropoulos, T. Bohl, H. Damerau, V. Kain, G. Papotti, G. Rumolo, Á. Saá Hernández, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
In the SPS, which is the last accelerator in the LHC ion injector chain, multiple injections of the Pb-ion beam have to be accumulated. On this injection plateau the beam suffers from considerable degradation such as emittance growth and losses. This paper summarises the achievements on improving the beam parameters and maximising the performance of the Pb-ion beam for the LHC physics run in 2018. The results are discussed in view of the target beam parameters of the LHC injectors upgrade project, which is being deployed during the presently ongoing long shutdown.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW069
|
|
About • |
paper received ※ 12 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPGW070 |
Longitudinal Stability of the Hollow Ion Bunches After Momentum Slip-Stacking in the CERN SPS |
254 |
|
- T. Argyropoulos, A. Lasheen, D. Quartullo, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
Momentum slip-stacking is planned to be used for the lead ion beams in the CERN SPS to double the beam intensity for the High-Luminosity LHC project. During this RF manipulation two SPS batches, controlled by two independent RF systems, are going to be interleaved on an intermediate energy plateau, reducing the bunch spacing from 100 to 50 ns. However, there are limitations how close the frequencies of two RF systems can approach each other, resulting in a hole in the longitudinal bunch particle distribution due to the offset in energy of the recaptured bunches. After filamentation, these bunches should be further accelerated to the SPS top energy, before extraction to the LHC. Macro-particle simulations have shown that Landau damping is lost for the bunches with the smallest longitudinal emittances in the batch, causing un-damped oscillations of the bunch core after recapture. The standard application of an additional, fourth harmonic RF system, successfully used in proton operation, was not able to damp the oscillations at top energy, while it was necessary to switch it on from the moment of recapture. In this paper the longitudinal stability of the bunches after slip-stacking is studied in more details both by macro-particle simulations and analytical calculations.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW070
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMP031 |
Operation and Performance of the Cern Large Hadron Collider During Proton Run 2 |
504 |
|
- R. Steerenberg, M. Albert, R. Alemany-Fernández, T. Argyropoulos, E. Bravin, G.E. Crockford, J.-C. Dumont, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Lamont, E. Métral, D. Nisbet, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, M. Schaumann, M. Solfaroli, R. Suykerbuyk, G. Trad, J.A. Uythoven, S. Uznanski, D.J. Walsh, J. Wenninger, M. Zerlauth
CERN, Geneva, Switzerland
|
|
|
Run 2 of the CERN Large Hadron Collider (LHC) was successfully completed on 10th December 2018, achieving largely all goals set in terms of luminosity production. Following the first two-year long shutdown and the re-commissioning in 2015 at 6.5 TeV, the beam performance was increased to reach a peak luminosity of more than twice the design value and a colliding beam time ratio of 50%. This was accomplished thanks to the increased beam brightness from the injector chain, the high machine availability and the performance enhancements made in the LHC for which some methods and tools, foreseen for the High Luminosity LHC (HL-LHC) were tested and deployed operationally. This contribution provides an overview of the operational aspects, main limitations and achievements for the proton Run 2.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP031
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPTS039 |
Momentum Slip-Stacking in CERN SPS for the Ion Beams |
3184 |
|
- T. Argyropoulos, T. Bohl, A. Lasheen, G. Papotti, D. Quartullo, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
The LHC Injectors Upgrade (LIU) project at CERN aims at doubling the total intensity of the lead ion beam for the High-Luminosity (HL) LHC. Achieving this goal requires using momentum slip-stacking in the SPS, the LHC injector. Slip-stacking will be applied on an intermediate energy plateau to interleave two batches, reducing the bunch spacing from 100 ns to 50 ns and thus increasing the total number of bunches injected into the LHC. Realistic macro-particle simulations, with the present SPS impedance model are used to study and design this complicated beam manipulation. Slip-stacking can be tested experimentally only after the upgrade of the SPS 200 MHz RF system, in 2021. Preliminary, slip-stacking related beam measurements were performed at the end of 2018. In this paper both macro-particle simulations and beam measurements are reported with emphasis given on optimisation of the process, crucial to achieve the required HL-LHC parameters (bunch lengths, beam losses).
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS039
|
|
About • |
paper received ※ 15 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|