Paper | Title | Page |
---|---|---|
MOPGW100 | Bypass Design for Testing Optical Stochastic Cooling at the Cornell Electron Storage Ring (CESR) | 360 |
SUSPFO048 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: NSF-1734189 DGE-1650441 Optical Stochastic Cooling (OSC) is a promising method for cooling very dense stored particle beams through the interference of radiation created in an upstream ’pickup’ wiggler and a downstream ’kicker’ wiggler. By correlating a particle’s path length via a bypass between the two wigglers with its betatron coordinates in the pickup, the particle will receive a kick in energy which, through coupling introduced by non-zero horizontal dispersion in the kicker, can reduce its betatron amplitude, thus cooling the beam. A proof-of-principle test of this technique is being planned at the Cornell Electron Storage Ring (CESR). In addition to maintaining standard requirements such as a large dynamic aperture and acceptable lattice functions throughout the ring, the design of the bypass is guided by the mutually competing goals of maximizing the cooling rate while maintaining a sufficiently large cooling acceptance with properly-corrected nonlinearities. We present a design of such a bypass and ring optics so as to best achieve these objectives. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW100 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 19 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPRB100 | A Generic Software Platform for Rapid Prototyping of Online Control Algorithms | 4063 |
SUSPFO123 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: US Department of Energy DE-SC 0013571 Algorithmic control of accelerators is an active area of research that promises significant improvements in machine performance. To facilitate rapid algorithm prototyping, we have developed a generic interface between accelerator controls, beam physics modelling software and modern scripting languages. The work-flow of a project using this interface begins with testing algorithms of choice offline in simulation. After off-line testing, the same code can be deployed on real machines via the Experimental Physics and Industrial Control System (EPICS) API. We include noise in our simulations in order to mimic realistic accelerator behaviour and to evaluate robustness of algorithms to experimental uncertainties and long-term drifts. The results of test cases of using this framework are presented, including emittance tuning of the Cornell Electron Storage Ring (CESR), correction of diurnal drift in CESR steering and orbit correction on CESR and the Cornell-BNL ERL Test Accelerator (CBETA). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB100 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |