Author: Anderson, S.G.
Paper Title Page
WEPGW120 Fluorescence-Based Imaging Diagnostic for High Average Power Deuteron Beam 2777
WEPGW119   use link to see paper's listing under its alternate paper code  
 
  • R.A. Marsh, S.G. Anderson, D.J. Gibson, J. Hall, B. Rusnak
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Lawrence Livermore National Laboratory is developing an intense, high-brightness fast neutron source to create sub-millimeter-scale resolution neutron radiographs and imag-es. An intense source (1011 n/s/sr at 0 degrees) of fast neutrons (10 MeV) will be produced using a pulsed 7 MeV, 300μAmp average-current commercial deuteron accelerator producing a small (1.5 mm diameter) beam spot size to achieve high resolution. The high average power beam is a challenge for diagnostics, and a precise full power emittance measurement is critical to benchmark the system performance. A fluorescence-based beam profiling diagnostic has been selected, and this paper presents the design for the system including chamber layout, light yield calculations, and imaging system details.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW120  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)