Author: Alomainy, A.
Paper Title Page
MOPTS106 Barrier Bucket Studies in the CERN PS 1128
 
  • M. Vadai, A. Alomainy
    QMUL, London, United Kingdom
  • H. Damerau
    CERN, Geneva, Switzerland
 
  Part of the residual beam loss during the Multi-Turn Extraction (MTE) of fixed target beams from the CERN Proton Synchrotron (PS) can be attributed to kicker magnets switching while the beam is coasting with the main RF systems off before extraction. Generating a barrier bucket to deplete the longitudinal line density of the coasting beam during the kicker rise time can reduce these losses. Beam tests have been performed with an existing Finemet cavity in the PS, which is normally operated as a wideband feedback kicker. To drive the cavity, a beam synchronous waveform synthesizer based on programmable logic has been developed. It produces a pre-distorted signal which ideally results in a single period sinusoidal voltage pulse with programmable parameters at the gap of the cavity, once or multiple times per revolution. The modelling of the behavior of the power amplifier and the cavity is essential to achieve an anti-symmetric voltage pulse with little pre- and post-pulse ripple. The design of the beam-synchronous waveform generator is presented together with results from initial beam studies with the created barrier buckets in the PS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS106  
About • paper received ※ 18 April 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS107 Beam Manipulations With Barrier Buckets in the CERN PS 1132
SUSPFO120   use link to see paper's listing under its alternate paper code  
 
  • M. Vadai, A. Alomainy
    QMUL, London, United Kingdom
  • H. Damerau, S.S. Gilardoni, M. Giovannozzi, A. Huschauer
    CERN, Geneva, Switzerland
 
  A barrier bucket scheme is being considered to reduce losses during the Multi-Turn Extraction from the CERN Proton Synchrotron to the Super Proton Synchrotron for the fixed-target physics programme. For effective loss reduction, the extraction kicker has to be triggered during the gap at the time of the longitudinal barrier. Initial beam studies at injection energy and with low intensity beams allowed to fully qualify an existing wide-band cavity to generate one or multiple beam synchronous pulses per turn. Bunch-length stretching and shortening have been exercised with barriers moving in azimuth with respect to the beam. The encouraging results obtained at injection energy guided the implementation of a de-bunching manipulation at higher energy to move all bunches into a single barrier bucket. Beam measurements at a momentum of 14GeV/c, varying intensity and the width of the barrier, demonstrate that a quasi-constant longitudinal line density and an almost fully depleted gap can be achieved at highest intensities. The contribution summarises the results of the beam studies at high energy together with some observations related to the Multi-Turn Extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS107  
About • paper received ※ 18 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)