Paper |
Title |
Page |
MOPGW069 |
Recent Beam Performance Achievements with the Pb-Ion Beam in the SPS for LHC Physics Runs |
250 |
|
- H. Bartosik, R. Alemany-Fernández, T. Argyropoulos, T. Bohl, H. Damerau, V. Kain, G. Papotti, G. Rumolo, Á. Saá Hernández, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
In the SPS, which is the last accelerator in the LHC ion injector chain, multiple injections of the Pb-ion beam have to be accumulated. On this injection plateau the beam suffers from considerable degradation such as emittance growth and losses. This paper summarises the achievements on improving the beam parameters and maximising the performance of the Pb-ion beam for the LHC physics run in 2018. The results are discussed in view of the target beam parameters of the LHC injectors upgrade project, which is being deployed during the presently ongoing long shutdown.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW069
|
|
About • |
paper received ※ 12 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMP031 |
Operation and Performance of the Cern Large Hadron Collider During Proton Run 2 |
504 |
|
- R. Steerenberg, M. Albert, R. Alemany-Fernández, T. Argyropoulos, E. Bravin, G.E. Crockford, J.-C. Dumont, K. Fuchsberger, R. Giachino, M. Giovannozzi, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Lamont, E. Métral, D. Nisbet, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, B. Salvachua, M. Schaumann, M. Solfaroli, R. Suykerbuyk, G. Trad, J.A. Uythoven, S. Uznanski, D.J. Walsh, J. Wenninger, M. Zerlauth
CERN, Geneva, Switzerland
|
|
|
Run 2 of the CERN Large Hadron Collider (LHC) was successfully completed on 10th December 2018, achieving largely all goals set in terms of luminosity production. Following the first two-year long shutdown and the re-commissioning in 2015 at 6.5 TeV, the beam performance was increased to reach a peak luminosity of more than twice the design value and a colliding beam time ratio of 50%. This was accomplished thanks to the increased beam brightness from the injector chain, the high machine availability and the performance enhancements made in the LHC for which some methods and tools, foreseen for the High Luminosity LHC (HL-LHC) were tested and deployed operationally. This contribution provides an overview of the operational aspects, main limitations and achievements for the proton Run 2.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP031
|
|
About • |
paper received ※ 13 May 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPRB052 |
Gamma Factory at CERN: Design of a Proof-of-Principle Experiment |
685 |
|
- Y. Dutheil, R. Alemany-Fernández, H. Bartosik, N. Biancacci, R. Bruce, P. Czodrowski, V. Fedosseev, B. Goddard, S. Hirlaender, J.M. Jowett, R. Kersevan, M. Kowalska, M. Lamont, D. Manglunki, J. Molson, A.V. Petrenko, M. Schaumann, F. Zimmermann
CERN, Meyrin, Switzerland
- S.E. Alden, A. Bosco, S.M. Gibson, L.J. Nevay
JAI, Egham, Surrey, United Kingdom
- A. Apyan
ANSL, Yerevan, Armenia
- E.G. Bessonov
LPI, Moscow, Russia
- A. Bosco, S.M. Gibson, L.J. Nevay
Royal Holloway, University of London, Surrey, United Kingdom
- F. Castelli
Università degli Studi di Milano, Milano, Italy
- F. Castelli, C. Curatolo, L. Serafini
INFN-Milano, Milano, Italy
- K. Kroeger
FSU Jena, Jena, Germany
- A. Martens
LAL, Orsay, France
- V. Petrillo
Universita’ degli Studi di Milano, Milano, Italy
- M. Sapinski, T. Stöhlker
GSI, Darmstadt, Germany
- G. Weber
IOQ, Jena, Germany
- Y.K. Wu
FEL/Duke University, Durham, North Carolina, USA
|
|
|
The Gamma Factory (GF) initiative proposes to create novel research tools at CERN by producing, accelerating and storing highly relativistic partially stripped ion beams in the LHC rings and by exciting their atomic degrees of freedom by lasers, to produce high-energy photon beams. Their intensity would be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting gamma-ray energy domain reaching up to 400 MeV. In this energy domain, the high-intensity photon beams can be used to produce secondary beams of polarized electrons, polarized positrons, polarized muons, neutrinos, neutrons and radioactive ions. Over the years 2017-2018 we have demonstrated that these partially stripped ion beams can be successfully produced, accelerated and stored in the CERN accelerator complex, including the LHC. The next step of the project is to build a proof of principle experiment in the SPS to validate the principal GF concepts. This contribution will present the initial conceptual design of this experiment along with its main challenge - the demonstration of the fast cooling method of partially stripped ion beams.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB052
|
|
About • |
paper received ※ 19 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPRB055 |
First Partially Stripped Ions in the LHC (208Pb81+) |
689 |
|
- M. Schaumann, R. Alemany-Fernández, H. Bartosik, T. Bohl, R. Bruce, G.H. Hemelsoet, S. Hirlaender, J.M. Jowett, V. Kain, M.W. Krasny, J. Molson, G. Papotti, M. Solfaroli Camillocci, H. Timko, J. Wenninger
CERN, Geneva, Switzerland
|
|
|
The Gamma Factory initiative proposes to use partially stripped ion (PSI) beams as drivers of a new type of high intensity photon source. As part of the ongoing Physics Beyond Collider studies, initial beam tests with PSI beams have been executed at CERN. On 25 July 2018 lead ions with one remaining electron (208Pb81+) were injected and accelerated in the LHC for the first time. After establishing the injection and circulation of a few 208Pb81+ bunches, beam lifetimes of about 50 hours could be established at 6.5 TeV proton equivalent energy. This paper describes the setup of the beam tests and observations made.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB055
|
|
About • |
paper received ※ 29 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEPGW089 |
Calibration of the AWAKE Electron Spectrometer with Electrons Derived from a Partially Stripped Ion Beam |
2694 |
|
- D.A. Cooke, M. Cascella, J. Chappell, S. Jolly, F. Keeble, M. Wing
UCL, London, United Kingdom
- R. Alemany-Fernández, J. Bauche, I. Gorgisyan, E. Gschwendtner, V. Kain, M.W. Krasny, S. Mazzoni, A.V. Petrenko
CERN, Meyrin, Switzerland
- P. La Penna, M. Quattri
ESO, Garching bei Muenchen, Germany
|
|
|
The energy distribution of electrons accelerated in the wake of a self-modulated proton beam is measured using a magnetic spectrometer at AWAKE. The spectrometer was commissioned in 2017 and ran successfully throughout 2018. Imaging properties of the spectrometer system are studied via a combination of simulations and linear optics models and validated using mono-energetic electrons stripped from the partially stripped ion beam in the AWAKE beamline at CERN. These and other details of the calibration and performance will be presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW089
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THXPLM1 |
LHC Injectors Upgrade Project: Towards New Territory Beam Parameters |
3385 |
|
- M. Meddahi, R. Alemany-Fernández, H. Bartosik, G. Bellodi, J. Coupard, H. Damerau, G.P. Di Giovanni, F.B. Dos Santos Pedrosa, A. Funken, B. Goddard, K. Hanke, A. Huschauer, V. Kain, A.M. Lombardi, B. Mikulec, S. Prodon, G. Rumolo, R. Scrivens, E.N. Shaposhnikova
CERN, Geneva, Switzerland
|
|
|
The LHC injectors Upgrade (LIU) project aims at increasing the intensity and brightness in the LHC injectors in order to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring high availability and reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2035). This requires extensive hardware modifications and new beam dynamics solutions in the entire LHC proton and ion injection chains: the new Linac4, the Proton Synchrotron Booster, the Proton Synchrotron the Super Proton Synchrotron together with the ion PS injectors (the Linac3 and the Low Energy Ion Ring). All hardware modifications will be implemented during the 2019-2020 CERN accelerators shutdown. This talk would analyze the various project phases, share the lessons learned, and conclude on the expected beam parameter reach, together with the related risks.
|
|
|
Slides THXPLM1 [20.029 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2019-THXPLM1
|
|
About • |
paper received ※ 14 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|