Paper | Title | Page |
---|---|---|
TUPMP048 | Current Status of Turkish Accelerator and Radiation Laboratory | 1359 |
|
||
Funding: T.R. Presidency Strategy and Budget Office Grand No: 2006K-120470 Turkish Accelerator and Radiation Laboratory (TARLA) which is designed to deliver various accelerator based radiation sources, aims to be outstanding research instrument for users from both Turkey and region. Within the current scope of TARLA its superconducting accelerator will drive two of free electron laser (FEL) beamlines in order to provide Continuous Wave (CW) tunable radiation of high brightness in the mid- and far-infrared range as well as a Bremmstrahlung radiation station. Main components of TARLA, such as injector, superconducting accelerating modules and cryoplant are under commissioning currently. In this paper commissioning results and current status of facility are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPMP048 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB032 | The CompactLight Design Study Project | 1756 |
|
||
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431 The H2020 CompactLight Project (www. CompactLight.eu) aims at designing the next generation of compact X-rays Free-Electron Lasers, relying on very high gradient accelerating structures (X-band, 12 GHz), the most advanced concepts for bright electron photo injectors, and innovative compact short-period undulators. Compared to existing facilities, the proposed facility will benefit from a lower electron beam energy, due to the enhanced undulators performance, and will be significantly more compact, with a smaller footprint, as a consequence of the lower energy and the high-gradient X-band structures. In addition, the whole infrastructure will also have a lower electrical power demand as well as lower construction and running costs. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB032 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB074 | Start-to-End Simulations of the Compact Light Project Based on an S-Band Injector and an X-Band LINAC | 1836 |
|
||
Funding: This project has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreement No 777431 In this paper we report the start-to-end simulation results of one of the options under consideration for the CompactLight Project (XLS). The XLS is a hard X-ray Free Electron Laser under design, using the latest concepts for bright electron photo injectors, very high-gradient X-band structures, and innovative short-period undulators. Presently there exist various tracking codes to conduct the design process. Therefore identifying the most convenient code is of notable importance. This paper compares the tracking codes, Placet and General Particle Tracer, using the XLS lattice based on a S and X-band Injector. The calculation results in terms of beam quality and tracking performance of a full 6-D simulation are presented. [*] The CompactLight Design Study Project, IPAC2019 proceedings. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB074 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPRB076 | Free Electron Laser Driven by a High-Energy High-Current Energy-Recovery Linac | 1844 |
|
||
Funding: This work was supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement no. 730871. The proposed electron-hadron collider LHeC, based on an energy recovery linac, employs an electron beam of 20 mA current at an energy of tens of GeV. This electron beam could also be used to drive a free electron laser (FEL) operating at sub-Angstrom wavelengths. Here we demonstrate that such FEL would have the potential to provide orders of magnitude higher peak power, peak brilliance and average brilliance, than any other FEL, either existing or proposed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPRB076 | |
About • | paper received ※ 10 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |