

Status and Prospects for the AWAKE Experiment

Marlene Turner, CERN for the AWAKE Collaboration

□ Introduction

- Concept of plasma wakefield acceleration
- □ AWAKE experiment
- □ Seeded self-modulation
- **Status** of the AWAKE experiment
 - □ Seeded self-modulation measurements results
 - □ 2018: electron acceleration

Prospects

AWAKE run 2

Summary

IPAC 2018

Concept of plasma wakefield acceleration

Why plasma wakefield acceleration ?

The general **goal** of the work done in our field is to:

- use plasma wakefields for charged particle acceleration;
- accelerate to higher energies in shorter distances than with RF cavities.

Why plasma wakefield acceleration ?

AIVAKE

The general **goal** of the work done in our field is to:

- use plasma wakefields for charged particle acceleration;
- accelerate to higher energies in shorter distances than with RF cavities.

Particle acceleration in **radiofrequency** cavities limited to fields ~100 MV/m due to electrical **breakdown** in the structure.

Accelerate charged particles with **plasma wakefields**, because plasma can sustain higher electric fields. Estimate of the achievable accelerating gradient is the cold plasma wave-breaking field (E):

$$eE = m_e \omega_{pe} c \sim 100 \frac{eV}{m} \sqrt{n_{pe} [cm^{-3}]}$$

i.e. **~1 GeV/m** for a plasma electron density n_{pe} of 10¹⁴cm⁻³ **~100 GeV/m** for 10¹⁸ electrons/cm³

M. Turner, CERN for the AWAKE collaboration 5

IPAC 2018

How to Create a Plasma Wakefield?

Plasma:

Quasi-neutral plasma in which electrostatic interactions dominate and charged particles are close enough to support collective behaviour.

Drive bunch or pulse:

Typically a relativistic charged particle bunch

or laser pulse/s.

How to Create a Plasma Wakefield?

Plasma:

Quasi-neutral plasma in which electrostatic interactions dominate and charged particles are close enough to support collective behaviour. Drive bunch or pulse: Typically a relativistic charged particle bunch or laser pulse/s.

CERN

AWAKE

How to Create a Plasma Wakefield?

CER AWAKE

Plasma:

Quasi-neutral plasma in which electrostatic interactions dominate and charged particles are close enough to support collective behaviour.

Drive bunch or pulse: Typically a relativistic charged particle bunch or laser pulse/s.

Larger plasma e⁻ density implies smaller plasma e⁻ wavelength \Rightarrow smaller structures

$$\lambda_{pe} = \frac{2\pi c}{\omega_{pe}} \propto \frac{1}{\sqrt{n_{pe}}}$$
 IPAC 2018

M. Turner, CERN for the 9 AWAKE collaboration

CERN

A WAKE

What is AWAKE?

- AWAKE stands for: Advanced Proton Driven Plasma WAKefield Experiment.
- AWAKE is a **R&D project** to study proton driven plasma wakefields at CERN.
- **Final Goal:** Design high quality & high energy electron accelerator.

CER

AWAKE

What is AWAKE?

- AWAKE stands for: Advanced Proton Driven Plasma WAKefield Experiment.
- AWAKE is a **R&D project** to study proton driven plasma wakefields at CERN.
- **Final Goal:** Design high quality & high energy electron accelerator based.

Caldwell A *Nature Physics* volume 5, pages 363– 367 (2009)

AWAKE

10m Rb vapor cell Developed by MPP

CER

Why protons?

The length over which wakefields can be sustained depends on the drive bunch energy

Laser pulses: ~40 J, Electron drive beam: 30 J/bunch, Proton drive beam: SPS 19 kJ/bunch, LHC 300 kJ/bunch.

Why protons?

The length over which wakefields can be sustained depends on the drive bunch energy

Laser pulses: ~40 J, Electron drive beam: 30 J/bunch, Proton drive beam: SPS 19 kJ/bunch, LHC 300 kJ/bunch.

To effectively excite wakefields (from linear plasma wakefield theory):

$$k_{pe}\sigma_z \approx \sqrt{2} \qquad k_{pe}\sigma_r \approx 1$$

 \Rightarrow In order to create plasma wakefields effectively, the **drive bunch length** has to be in the order of the **plasma** wavelength \Rightarrow mm scale proton bunches do not exist.

Why protons?

The length over which wakefields can be sustained depends on the drive bunch energy

Laser pulses: ~40 J, Electron drive beam: 30 J/bunch, Proton drive beam: SPS 19 kJ/bunch, LHC 300 kJ/bunch.

To effectively excite wakefields (from linear plasma wakefield theory):

$$k_{pe}\sigma_z \approx \sqrt{2} \qquad k_{pe}\sigma_r \approx 1$$

 \Rightarrow In order to create plasma wakefields effectively, the **drive bunch length** has to be in the order of the **plasma** wavelength \Rightarrow mm scale proton bunches do not exist.

CERN SPS proton bunch: very long!

Longitudinal beam size ($\sigma_z = 6-15 \text{ cm}$) is much longer than plasma wavelength ($\lambda_{pe} = 1 \text{ mm}$, $n_{pe} = 7 \times 10^{14} \text{ e}^{-1}/\text{cm}^{-3}$)

 \Rightarrow Seeded Self-Modulation (SSM)

Before self modulation:

- 1) When entering the plasma, the bunch drives **wakefields** at the **initial seed value**.
- 2) The initial wakefields act back on the proton bunch itself. The on-axis density is modulated. The contribution to the wakefields is ∝ n_b.
- 3) Density modulation on axis (Micro-bunches)-

Micro- bunches separated by λ_{pe} .Drive wakefields resonantly.

- 1) When entering the plasma, the bunch drives **wakefields** at the **initial seed value**.
- 2) The initial wakefields act back on the proton bunch itself. The on-axis density is modulated. The contribution to the wakefields is $\propto n_b$.
- 3) Density modulation on axis (Micro-bunches)-

Micro-bunches separated by λ_{pe} . Drive wakefields resonantly. b)

a)

We **seed** the instability by:

 Placing the laser close to the center of the proton bunch

 \Rightarrow Seeded self-modulation (SSM)

• Sudden onset of the proton density

M. Turner, CERN for the 17 AWAKE collaboration

IPAC 2018

The AWAKE experimental setup

The AWAKE experimental setup

- 10 m long rubidium vapour source with a vapour density adjustable from 10¹⁴-10¹⁵ atoms/cm³ and a density uniformity of 0.2%.
- **2.** Laser system that produces a 120 fs, 450mJ laser pulse.
- Proton beam line that transfers a 400 GeV/c proton bunch with a RMS length of 6-15 cm, a radial RMS size of 0.2 mm and 3x10¹¹ protons/bunch from the CERN SPS to AWAKE.
- 4. Experiment diagnostics.
- 5. Electron photoinjector and transfer line that produces a 10-20 MeV electron bunch with a RMS length of 1 mm a RMS size of \sim 0.2 mm and \sim 10⁹ electrons/bunch.

M. Turner, CERN for the AWAKE collaboration 19

IPAC 2018

Alignment of p⁺, e⁻ and laser pulse

Temporal alignment:

Alignment of p⁺, e⁻ and laser pulse

CERN

AWAKE

The AWAKE experiment (Run 1)

1. Self-modulate a long (compared λ_{pe}) 400 GeV/c proton bunch in plasma.

The AWAKE experiment (Run 1)

1. Self-modulate a long (compared λ_{pe}) 400 GeV/c proton bunch in plasma.

1. Accelerate externally injected 10-20 MeV electrons to GeV energies (2018).

M. Turner, CERN for the AWAKE collaboration

IPAC 2018

First results of the AWAKE experiment

Did the bunch self-modulate?

Generally we measure what is going **into the plasma** and what is **coming out of the plasma** ⇒ what has happened inside the plasma.

> M. Turner, CERN for the AWAKE collaboration 25

IPAC 2018

OTR Streak camera measurement

Streak camera imaging OTR light ⇒ time resolved image of the proton bunch.

The imaging stations

IPAC 2018

2 Imaging stations \Rightarrow Transverse time integrated bunch profile.

Goal: Detect protons that got defocused by the strong plasma wakefields.

The imaging stations

2 Imaging stations \Rightarrow Transverse time integrated bunch profile.

Goal: Detect protons that got defocused by the strong plasma wakefields.

Seeded Self-Modulation

 $N_{pe} = 2.1e14/ccm$

Effect starts at the laser position.

IPAC 2018

□ Micro-bunches are visible on a fast time-scale.

- □ **Single** streak camera measurement
- □ Time scale ~73 ps
- Streak camera trigger jitter (~20ps rms): **Marker laser** pulsed synchronized with

ionization laser pulse at the 10 ps time scale.

IPAC 2018

- □ **10 consecutive events** aligned to marker laser pulse
- Bunches add:

IPAC 2018

- Modulation fixed wrt ionizing laser pulse
- Modulation fixed wrt to seed

Seeded Self-Modulation

CERN

AWAKE

M. Turner, CERN for the 32 AWAKE collaboration

□ 5 sets of 10 events each

Describe because: marker laser pulsed synchronized with ionization laser pulse at the ps time scale

IPAC 2018

- □ Micro-bunches present over long time scale from seed point
- □ "Stitching" demonstrates **reproducibility** of the micro-bunch process against bunch parameters variations (N=2.5x10¹¹±10%, s_{rt}=220±10ps, s_r)
- □ Phase stability essential for e⁻ external injection!

M. Turner, CERN for the 33 AWAKE collaboration

IPAC 2018

Detection of defocused protons

Two consecutive measurements:

Close to **AWAKE** baseline parameters.

- Proton density in core decreases, proton density at large radii increases (appearance of halo).
- Protons get defocused up to a maximum radius of 14.5 mm for a plasma density of 7.7e14/cm³.
- □ Halo symmetric \Rightarrow **no hose instability**.

Electron acceleration

The AWAKE electron bunch

AWAKE

□ The **electron gun** and **transport line** has been installed in 2017.

□ The electron system is now under **commissioning**.

IPAC 2018

Electron injection

AWAKE is getting ready for electron acceleration:

□ Challenge:

- During the **SSM** the proton bunch distribution evolves
- □ Short plasma density ramp at the entrance of the plasma
 - \Rightarrow change of wakefield phase

Electron injection

AWAKE is getting ready for electron acceleration:

□ Challenge:

- During the **SSM** the proton bunch distribution evolves
- ❑ Short plasma density ramp at the entrance of the plasma
 ⇒ change of wakefield phase
- □ Instead of injecting bunches co-linear
 ⇒ Cross the electron and proton bunch at a defined location inside the plasma.

□ Radial bunch size:

- □ proton : ~150 um
- □ electron : ~200 um

What is the energy of accelerated electrons?AWAKE

Accelerated electrons are sent through an imaging **spectrometer** and deposit energy on a **scintillating screen** which is imaged by a camera.

e Scintillator screen

TCC4 Shielding Wall

B = 0.1 - 1.5 TMagnetic length = 1m

We can detect electrons with energies ranging from: 30 MeV - 8.5 GeV

IPAC 2018

See Keeble F et al.. The AWAKE electron Spectrometer, this proceedings

CERN

Prospects

M. Turner, CERN for the AWAKE collaboration

CERN

AWAKE

AWAKE Run 2

Goal: The next big step for AWAKE is to demonstrate **scalability** of the AWAKE concept and that we can control the parameters of the accelerated electron bunch to the level where it can be used for first applications:

- a micron-level normalized emittance
- □ a percent level relative energy spread
- □ high charge

After Run 2: get ready for first HEP applications:

Use bunches from SPS with 3.5 E11 protons every ~5sec, electron beam of up to O (50GeV).

M. Turner, CERN for the 42 AWAKE collaboration

CERN

AWAKE

IPAC 2018

Conclusions and Summary

- The goal of the AWAKE experiment is to: accelerate electrons with plasma wakefields driven by a self-modulated proton bunch.
- □ We demonstrated that the **SSM develops** over the 10m of plasma and that its physics properties scale as expected.
- The electron beam system has been installed and is under commissioning.
- **Electron acceleration** experiments are foreseen for 2018.