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We rely heavily on operators for day-to-day control tasks . . .

. . . so what can we learn from them, 
and what analogous techniques can we use?

Fermilab Control Room Photo: 
Reidar Hahn, FNAL



Inspiration from Operators

Fermilab Control Room Photo: Reidar Hahn, FNAL
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Field Taxonomy (as of now...)
• Artificial Intelligence (AI)

• Concerned with enabling machines to exhibit aspects of human intelligence: knowledge, learning, 
planning, reasoning, perception

• Narrow AI: focused on a task or similar set of tasks
• General AI: human-equivalent or greater performance on any task

• Machine Learning (ML)
• Enabling machines to complete tasks without being explicitly programmed
• Common tasks: Regression, Classification, Clustering, Dimensionality Reduction

• Neural Networks (NNs)
• An approach within ML that uses many connected processing units
• Many different architectures and training techniques 

• Deep Learning (DL)
• Learning hierarchical representations 
• Right now, largely synonymous with deep (many-layered) NN approaches

Artificial Intelligence

Machine Learning

Neural Networks

Note that these definitions are not rigid: there is a lot of fluidity in the field

Deep Learning

Mathematical Optimization

e.g. Evolutionary Algorithms,
Swarm Intelligence

e.g. Gaussian Process Optimization

e.g. Simplex, Gradient Descent
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The Landscape of this Talk…

Model 
Learning

For all of the above, can in principle include image-based diagnostics directly



Online Modeling

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development
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Online Modeling

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development

One approach: faster modeling codes
Simpler models (tradeoff with accuracy)

analytic calculations

Parallelization and GPU-acceleration of existing codes
HPSim/PARMILA

elegant 

Improvements to modeling algorithms

I. V. Pogorelov, et al., IPAC15, MOPMA035

X. Pang, PAC13, MOPMA13

e. g.  J. Galambos, et al., HPPA5, 2007

J.-L. Vay, Phys. Rev. Lett.98 (2007) 130405Lorentz-boosted frame



Online Modeling
Another approach: machine learning model

Once trained, neural networks can execute quickly

Train on data from slow, high-fidelity simulations

Train on measured data
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Online Modeling
Another approach: machine learning model

Once trained, neural networks can execute quickly

Train on data from slow, high-fidelity simulations

Train on measured data

• Use a machine model during operation
•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications:
• A tool for operators + virtual diagnostic
• Predictive control 
• Help flag aberrant behavior
• Bonus: control system development

+

Simulation
+ Machine

NN Model

An initial study at Fermilab:

One PARMELA run with 2-D space charge: ~ 20 minutes
Neural network model: ~ a millisecond

A. L. Edelen, et al. NAPAC16, TUPOA51
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Predict what diagnostics might look like when they are unavailable or don’t exist

Online 
Model

Real-time prediction of beam characteristics or explicit 
diagnostic output

Virtual Diagnostics

fast-executing simulation

measured 
machine
inputs

e.g. GPU-accelerated HPSim at 
LANSCE (based on PARMILA)

X. Pang, et al., PAC13, MOPMA13

L. Rybarcyk, et al., IPAC15, MOPWI033
L. Rybarcyk, HB2016, WEPM4Y01

X. Pang, IPAC15, WEXC2
X. Pang and L. Rybarcyk, CPC185, is. 3 (2014)
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Virtual Diagnostics at Fermilab’s FAST Facility

The subject of this virtual diagnostic work

to high energy line 
and IOTA
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mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

Multi-slit emittance measurement after the second capture cavity (X107 to X111) takes 10-15 seconds 
à can we get an online prediction of what this intercepting diagnostic would show?

the subject of this work



Initially limit the scope…

Neural
Network

Solenoid Current

Phases (Gun, CC1, CC2)

Initial Bunch Properties
(charge, length, ε

x,y 
, x-y corr.)

Transmission

Average Beam Energy

Transverse Sigma Matrix

ε
x,y  β

x,y
α

x,y

— 600	simulation	samples
— 250	measured	data	samples
— fully-connected,	feedforward	NN	
— tanh activation	functions
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gun	phase	scans
solenoid	current	scans
(with	two	different	laser	intensities)

mask screenbeam

fit	to	obtain	
subset	of	phase	
space	parameters

+ full	sigma	
matrix

simulate	gun	to	X107	in	OPAL	(space	charge),		the	mask	in	python,	and	remainder	in	elegant

OPAL elegant
other	setting	
combinations

Could in principle use measured data alone, but want to be efficient with machine time
à use simulation data to fill out the training set

cathode à CC2
with 3-D space charge routine



Poor agreement between simulation and 
measured data for some input/output 

relationships

à can we update the NN model with 
measured data without disrupting the other 

predictions?

Training on imperfect simulations … NN only as good as the simulation
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Why bother with simulation at all? à Rough initial solution facilitates training with small amount of measured data



Predicting Image Output Directly

Simulated NN Predictions Difference

A. L. Edelen, et al. IPAC18,  WEPAF040



Bigger Picture

(αx		,	αy)

(εnx ,	εny)

(βx	,	βy)

(Np)

(E)

A. L. Edelen, et al. NAPAC16, TUPOA51
Earlier work: account for changes in laser spot

The subject of this virtual diagnostic work

to high energy line 
and IOTA

Ongoing work: NN-based round-to-flat beam transform
One piece of a larger set of studies:

• Accounting for laser spot changes
• NN controller (starting with round-to-flat beam transform)
• The vision is to combine these

Fast-executing, accurate machine model

Online:        facilitate studies

Offline: study planning
downstream component design
controller training

Q120

Q119

Q118

Neural
Network

Initial Sigma Matrix
or upstream settings

Desired Sigma Matrix

Work with J. Edelen, D. Edstrom,  A. Halavanau,  J. Ruan, P. Piot, A. Romanov, S.G. Biedron, S. V. Milton



Fast Switching Between Trajectories

JLab

• 76 BPMs, 57 dipoles, 53 quadrupoles 
• Traditional approach has never worked (linear response matrix)
• Rely on a few experts for steering tune-up
• Want to specify small offsets in trajectory at some locations
• Didn’t initially have an up-to-date machine model available

Learn responses (NN model) from tune-up data and 
dedicated study time: 
dipole + quadrupole settings à predict BPMs + 
transmission

Train controller (NN policy) offline using NN model: 
desired trajectory à dipole settings
(and penalize losses + large magnet settings)

Work with C. Tennant and D. Douglas, JLab



Fast Switching Between Trajectories

Controller: random initial states à on average 
within 0.2 mm of center immediately

Model Errors for BPMs:
Training Set: 0.07 mm MAE    0.09 mm STD
Validation Set:     0.08 mm MAE 0.07 mm STD
Test Set: 0.08 mm MAE  0.03 mm STD

Preliminary Results:

Modeling Example 
(randomly selected a BPM 
out of the data set to plot)

Main anticipated advantage of NN over standard approach:

Adaptive control policy à adjust without interfering with 
operation for response measurements as often?

Handling of trajectories away from BPM center (nonlinear)

But, need to quantify this …

Learn responses (NN model) from tune-up data and 
dedicated study time: 
dipole + quadrupole settings à predict BPMs + 
transmission

Train controller (NN policy) offline using NN model: 
desired trajectory à dipole settings
(and penalize losses + large magnet settings)



Switching Between User Requests
• FEL facilities support a wide variety of scientific 

endeavors (e.g. imaging protein structures1, understanding 
processes like photosynthesis2, origin of material properties3)

• Need to accommodate requests for a wide variety of 
photon beam characteristics

• May switch as often as every few days

• Have save/restore settings, but these are discrete, and 
there can be some drift in the machine

• Time spent tuning = reduced scientific output for a 
given operational budget

[1] J.-P. Colletier, et al.,"De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure," Nature , vol. 539, pp. 43–47, Sep. 2016.
[2] I. D. Young, et al., "Structure of photosystem II and substrate binding at room temperature,” Nature , vol. 540, pp. 453–457, Nov. 2016.
[3] M. P. Jiang, et al., "The origin of incipient ferroelectricity in lead telluride," Nature Communications, vol. 7, no. 12291, Jul. 2016.

e.g. the Linac Coherent Light Source
(image: lcls.slac.standford.edu)

Would be nice to have a tool that can quickly give suggested 
settings for a given photon beam request, is valid globally, and 
can adapt to changes over time



Starting Smaller:  A Case Study

This is an appealing system for an initial study because it has a small number of machine components, yet 
it exhibits non-trivial beam dynamics. 

Compact, THz FEL design based on previously operational TEU-FEL 3 – 6 MeV electron beam
200 – 800 𝜇m photon beam

Previously operated at University of 
Twente in the Netherlands

Was going to be re-built at CSU



Intermediate goal:  get the right beam parameters at the undulator entrance



Get Training Data from Simulation
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Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings
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Want to use the existing data to initialize control 
policy



Get Training Data from Simulation

Optimizer

Physics 
Simulation

settings
s

beam
parameters

p

repeat for different target energies 

all samples
converged samples
(optimal settings)

Train Forward and Inverse NN Models

Inverse 
Model

Forward 
Model

Leave out one 
energy range 
for validation

Don’t always have a good physics-based model for particle 
accelerators, so what’s in the data archive of a real facility?  

Noisy data + tuning around roughly optimal settings

Initial
Policy

Want to use the existing data to initialize control 
policy à model not invertible, but can pre-train policy 
with converged settings

Initial
Policy



Training the Control Policy

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters
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• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Every nth iteration, take batch of s', p' sampled from D,
run through physics simulation, and update the model

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters



Training the Control Policy

• First: just want to switch to roughly correct settings
• Then, two options: efficient local tuning algorithms we already use, or online model/controller updating

NN Control Policy Update

Policy
Forward 
Model

Batch of 
pt

p'

(frozen)

cost C(pt , p', s')

add (s', p') to database D

s'

Then test policy directly on simulation

Every nth iteration, take batch of s', p' sampled from D,
run through physics simulation, and update the model

Cost: 
difference between p' and pt

penalize loss of transmission 
penalize higher magnet settings 

pt -- target beam parameters

s' -- predicted optimal settings

p' – predicted beam parameters



Initial Model and Controller
Training data from simulation:
• output from each iteration of Nelder-Mead, L-BFGS
• 12 beam energies between 3.1 – 6.2 MeV (7195 samples)

Example of what the training data looks like
(quadrupoles shown in this case)

Policy: 30-30-20-20 tanh nodes in hidden layers
- inputs/outputs opposite the above (except Np) 
- random target energies, 𝛼#$ = 0, 𝛽#$ = 0.106
- exclude 4.8 – 5.2 MeV range for validation

First study: focus on target 𝛼, 𝛽 for a given energy 

Model: 50-50-30-30 tanh nodes in hidden layers
- 8 inputs (rf power, rf phase, sol. strength, quads)
- 8 outputs (𝛼𝑥		,	𝛼𝑦 , 𝛽𝑥 , 𝛽𝑦	 , 𝜀𝑥	 , 𝜀𝑦 , E , Np)
- 5.7-MeV run used for validation set



Initial Model and Controller Performance

Summary of Model Performance Example of Model Performance



Initial Model and Controller Performance

Controller ability to reach 𝛼#,$ = 0 and 𝛽#,$ = 0.106 in one iteration

What this means: for a given energy, the controller will immediately reach the desired beam size to within about 10% and 
the beam will be close to a waist, requiring minimal further tuning (assuming no substantial drift…)

Example of Model PerformanceSummary of Model Performance

A.L. Edelen et al., FEL ‘17

Work with J. Edelen, S.G. Biedron, S. V. Milton, P.J.M. van der Slot, H. P. Freund



Dealing with “Long-Term” Time Dependencies: 
Resonant Frequency Control in Normal Conducting Cavities

Photo: P. Stabile

Photo: J. Steim
el

RF electron gun at the Fermilab Accelerator 
Science and Technology (FAST) facility

Radio frequency quadrupole (RFQ) for the 
PIP-II Injector Test

“long term” in this case means responses lasting many 
minutes (e.g. 30), with control actions at 0.5 Hz and 1 Hz



Existing Feedforward/PID Controller Model Predictive Controller

Temperature Control for the RF Photoinjector at FAST

Resonant frequency controlled via temperature 

PID control is undesirable in this case:
• Long transport delays and thermal responses
• Recirculation leads to secondary impact of disturbances
• Two controllable variables: heater power + valve aperture

Applied model predictive control (MPC) with a neural network model 
trained on measured data:  ~ 5x faster settling time + no large overshoot

More info: A. L. Edelen. IEEE TNS, vol. 63, no. 2, 2016Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Gun Water System Layout

Work with B. Chase, D. Edstrom, E. Harms, J. Ruan, J. Santucci, FNAL



“Some of the most dangerous malfunctions of 
the magnets are quenches which occur when a 
part of the superconducting cable becomes 
normally-conducting.”

Aim: use a recurrent NN to identify quench 
precursors in voltage time series

à Predict future behavior,  then classify it

Initial study with small data set: 
• 425 quenches for 600 A magnets
• Used archived data from 2008 to 2016 
• 16-32 previous values à predict a few time steps 

ahead



Some Practical Challenges

Training on Measured Data

Training on Simulation Data

Observed parameter range in archived data

Undocumented manual changes 
(e.g. rotating a BPM)

Relevant-but-unlogged variables

Availability of diagnostics

Input/output parameters need 
to translate directly to what’s 
on the machine (quantitatively) 

High-fidelity (e.g. PIC) 
à time-consuming to run

Retention + availability 
of prior results:  

(optimize and throw the 
iterations away!)

How representative of the real 
machine behavior?

Deployment

Initial training is on HPC systems à deployment is typically not*
- Execution on front-end: necessary speed + memory?
- Subsequent training: on front-end or transfer to HPC?

Time on machine for characterization studies
(schedule + expense)

Ideal case: 
- comprehensive, high-resolution data archive
(e.g. including things like ambient temp./pressure)

- excellent log of manual changes I/O for large amounts of data

Software compatibility for older systems:
interface with machine + make use of modern ML software libraries

* for now…

Need a sufficient* amount of reliable* data

*large enough parameter range and set of examples to 
generalize well and complete the task

*e.g. not too many unaccounted for 
inputs or hardware changes, etc.



Final Notes
• Neural networks are very flexible tools à far more powerful + accessible in recent years 
• Lots of opportunities to use neural networks (and ML more broadly) to improve  

accelerator performance on both existing and future machines
• Transferrable between machines to some degree à lots of potential for fruitful collaborations! 
• But, not a panacea!

• Simpler model-independent online optimization + simpler model-based approaches in many cases may be more appropriate
• Boundaries of usefulness/reliability and tradeoff with time investment have yet to be determined rigorously
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• But, not a panacea!

• Simpler model-independent online optimization + simpler model-based approaches in many cases may be more appropriate
• Boundaries of usefulness/reliability and tradeoff with time investment have yet to be determined rigorously

• Growing community à two very recent workshops on ML for accelerators

Intelligent Controls for Particle Accelerators
30 – 31 January at Daresbury Lab
Agenda/Talks: https://tinyurl.com/y9rg3uht

Machine Learning for Particle Accelerators
27 February – 2 March at SLAC
Agenda/Talks: https://tinyurl.com/y988njbl



Final Notes
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