Author: Zhang, K.Q.
Paper Title Page
MOZGBD5 A Proposal for Coherent Hard X-Ray Generation Based on Two-Stage EEHG 38
 
  • Z.T. Zhao, J.H. Chen, C. Feng, Z. Wang, K.Q. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A two stage echo-enabled harmonic generation (EEHG) scheme to produce coherent hard X-rays is presented. Electron bunchs of quite different lengths are separately used in each stage of EEHG and a monochromator is employed to purify the radiation from the first stage for seeding the second one. Theoretical analysis and 3D simulations show that the proposed scheme can generate fully coherent hard X-ray pulses directly from a conventional UV seed laser.  
slides icon Slides MOZGBD5 [7.330 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK070 Optimization for the Two-Stage Hard X-Ray Self-Seeding Scheme the SCLF 4460
 
  • T. Liu, C. Feng, D. Wang, X. Wang, K.Q. Zhang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Work supported by the National Natural Science Foundation of China 11475250 and 11605277, National Key Research and Development 2016YFA0401901 and Youth Innovation Promotion Association CAS 2015209.
Self-seeding mode has been demonstrated a great advantage for the achievement of a high brightness X-ray with a pure spectrum. Single-bunch self-seeding scheme with wake monochromators is adopted for the realization of the hard X-ray FEL at the Shanghai Coherent Light Facility (SCLF). Limited by the heat-loading of the monochromator, the two or multiple stages self-seeding scheme is required. In this contribution, we present a basic two-stage scheme design and optimization for the generation of the photon energy range of 3 keV to 15 keV at the line FEL-I of the SCLF. Simulation results show the peak power and pulse energy each stage, which illustrates the loaded energy required of the crystal monochromator as a pointcut of its following thermal analysis. The electron beam energy used in the study is 8 GeV and the central photon energy is 12.4 keV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK076 Longitudinal Shaping for Beam-Driven Plasma Wakefield Accelerators 4477
 
  • Z. Wang, K.Q. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • S. Huang, W. Lu
    TUB, Beijing, People's Republic of China
 
  The generation of high quality driven electron beam (high peak current and small beam size) is quite important for the beam-driven plasma accelerator. Besides, a linearly ramped, more exactly, the triangular current distribution is more suitable. In this paper, by adjusting the phase and the amplitude of the harmonic linearizer, the linear ramped current distribution electron beam is generated by the FEL linac. The CSR introduced emittance growth and the jitters of the electron are researched. The electron beam generated by the ramped driven beam in the plasma is researched as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK077 The Preliminary Experiment Studies for Soft X-Ray Self-Seeding System Design of SCLF Facility 4481
 
  • K.Q. Zhang, C. Feng, D. Wang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  The preliminary experiment studies for soft x-ray self-seeding system design of SCLF facility have been pre-sented in this paper. Some practical problems and pre-engineering design have been studied for the experimental prepare of soft x-ray self-seeding for the future SCLF facility. The monochromator system designs in this paper include optical structure, optical parameters and mechanical design. The designed optical system has an optical resolution of 1/10000 at the photon energy of 700-1300eV based on the optical simulation. To make the system satisfy the experimental requirements, mechanical install requirements and install precisions are also analysed. Considering the actual varies errors, the errors analyses such as the surface errors of the optical mirror and the machining errors of the VLS grating are also carried out. In conclusion, preliminary experimental studies including system design and varies engineering requirements are introduced to make sure that the presented design is reliable for final soft x-ray self-seeding experiment of SCLF facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK078 Corrugated Structure as a Linearizer in High Repetition Rate X-Ray Free Electron Laser Source 4485
 
  • Z. Wang, C. Feng, D. Huang, K.Q. Zhang, M. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A feasible method is proposed to compensate the high order mode (HOM) of the RF field, linearize the bunch compression process in the high repetition rate x-ray free electron laser source. In the proposed scheme, the corrugated structure is used in the superconducting linac to linearize the longitudinal phase space of the electron beam. The results show that the peak current of the electron beam will be increased from about 1 kA to over 2 kA with the charge of 100 pC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)