Paper | Title | Page |
---|---|---|
MOPMF039 | First Xenon-Xenon Collisions in the LHC | 180 |
|
||
In 2017, the CERN accelerator complex once again demonstrated its flexibility by producing beams of a new ion species, xenon, that were successfully injected into LHC. On 12 October, collisions of fully stripped xenon nuclei were recorded for the first time in the LHC at a centre-of-mass energy per colliding nucleon pair of 5.44 TeV. Physics data taking started 9.5 h after the first injection of xenon beams and lasted a total of 6 h. The integrated luminosity delivered to the four LHC experiments was sufficient that new physics results can be expected soon. We provide a general overview of this Xe-Xe pilot run before focussing on beam data at injection energy and at flat-top. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF047 | Transverse Coupling Measurements With High Intensity Beams Using Driven Oscillations | 208 |
|
||
Transverse coupling has been linked to instabilities and reduction in dynamic aperture and is hence a crucial parameter to control in the LHC. In this article we describe the development to use driven oscillations to measure the transverse coupling with high intensity beams. The method relies on the use of the transverse damper to drive an oscillation in a similar way as with an AC-dipole. The calculation of the coupling is based on the turn-by-turn data from all available BPMs gated for the excited bunch. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF047 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF050 | LHC Operational Experience of the 6.5 TeV Proton Run with ATS Optics | 216 |
|
||
In May 2017, the CERN Large Hadron Collider (LHC) restarted operations at 6.5 TeV using the Achromatic Telescopic Squeeze (ATS) scheme with a target beta-star of 40 cm in ATLAS and CMS. The number of bunches was progressively increased to a maximum of 2556 with emittances of 2.5 um. In August, several machine parameters had to be re-tuned to mitigate beam loss induced instabilities and maintain a steady increase of the instantaneous luminosity. The use of a novel beam type and filling pattern produced in the injectors, allowed filling the machine with very low emittance beam (1.5 um) achieving an equivalent luminosity with 1868 bunches. In September, the beta-star was further lowered to 30 cm (using, for the first time, the telescopic technique of the ATS) and the bunch intensity pushed to 1.25·1011 protons. In the last 3 months of 2017, the LHC produced more than 500 pb-1 of integrated luminosity per day, delivering to each of the high luminosity experiments 50.6 fb-1, 10% above the 2017 target. A general overview of the operational aspects of the 2017 proton run will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF050 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF051 | LHC Operational Scenarios During 2017 Run | 220 |
|
||
During 2017, the Large Hadron Collider LHC delivered luminosity for different physics configuration in addtion to the nominal 6.5 TeV proton-proton run. About 18.5 days were dedicated to commission and to deliver special physics to the experiments. Condifurations with large beta-star of 19 m and 24 m were prepared for luminosity calibration with Van de Meer scans. A proton-proton run at 2.51 TeV took place during the last weeks of November to provide reference data for the heavy ion (Pb-Pb, p-Pb) collisions at the same equivalent nucleon energy . A very short (0.5 days) but effective ion run was scheduled where the LHC saw the first Xe beams collissions and delivered around 3 ub-1 to ATLAS and CMS. The run ended with a low event pile-up run at 6.5TeV. This contribution summarizes the operational aspects and delivered targets for the different configurations. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF051 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF053 | Observations, Analysis and Mitigation of Recurrent LHC Beam Dumps Caused by Fast Losses in Arc Half-Cell 16L2 | 228 |
|
||
Recurrent beam dumps significantly perturbed the operation of the CERN LHC in the summer months of 2017, especially in August. These unexpected beam dumps were triggered by fast beam losses that built up in the cryogenic beam vacuum at the half-cell 16 left of LHC-IP2 and were detected either at that location but mainly in the collimation insertions. This contribution details the experimental observables (beam losses, coherent instabilities, heat load to cryogenic system, vacuum signals), the extent of the understanding of the beam loss and instability mechanisms and the mitigation steps and new settings that allowed recovering the luminosity performance of the LHC for the rest of the Run. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF057 | FCC-ee Dynamic Aperture Studies and Frequency Map Analysis | 244 |
|
||
The FCC-ee Lepton Collider will provide e+e− collisions in the beam energy range of 45.6 GeV to 182.5 GeV. FCC-ee will be a precision measurement tool for Z, W, H and t physics with expected luminosities of 2.07× 1036 cm-2 s-1 at the Z-pole and 1.3 × 1034 cm-2 s-1 at the tt- threshold. In order to achieve the foreseen luminosities, a vertical β* of 1 mm to 2 mm is mandatory. Dynamic aperture and frequency map analysis for the 97.75 km machine with such a squeezed accelerator optics are studied. Furthermore, effects of machine misalignments on dynamic and momentum aperture are presented and estimations for the required tolerances are given | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF057 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF058 | Status of the LHC Schottky Monitors | 247 |
|
||
The Large Hadron Collider (LHC) features four transverse Schottky monitors detecting Schottky noise from the beam. From the Schottky noise signal, beam properties like tune, chromaticity, and bunch by bunch relative emittances, can be extracted. Being a non-destructive and purely parasitic method of measurement, the Schottky system is of great interest for real-time determination of beam chromaticities especially. Studies, including a dedicated machine development shift as well as parasitic measurements, concerning its capability to accurately measure the beam chromaticities are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF058 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMF060 | Safe Disposal of the LHC Beam without Beam Dump - Method and Experimental Verification | 253 |
|
||
Funding: Research supported by the HL-LHC project. In the extremely unlikely event of a non-working beam dumping system in the LHC, the 360 MJ of stored beam energy can be dissipated in the collimation system as a last mitigation measure. In such a situation, it is important to reduce the stored beam energy both quickly and at the same time as smoothly as possible in order to limit the risk of trips of critical systems, to avoid quenches of superconducting magnets (which would lead to changes of the beam trajectory and damage to the accelerator) and ultimately damage to the collimators themselves. Detailed steps and parameters have been developed and validated during two dedicated experiments with beam in the LHC. This paper summarizes the key aspects in view of the preparation of such a procedure for operational use, which will allow for the safe disposal of the full LHC beam by the operation crews. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF060 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPMF080 | Investigation and Estimation of the LHC Magnet Vibrations Induced by HL-LHC Civil Engineering Activities | 2568 |
|
||
HL-LHC requires the excavation of large underground infrastructures in order to host new equipment. The tunnel shall be ready for installation for LS3 (2022) and therefore its construction shall take in place in parallel with the LHC exploitation. Effect of vibrations induced by civil engineering activities need to be evaluated in order to take required corrective actions. For this purpose, several diverse measurements and experiments have been performed in order to estimate the vibration sources and determine the vibration transfer path through the floor and the structure. The transfer functions from amplitude and phase point of view were determined through molasses rock, for both horizontal and vertical vibrations, with dedicated tools and Experimental Modal Analysis was carried out on mechanical structure. The campaign of measurements have been used to confirm the effect of the surface induced vibration on the circulating beam orbit at the resonance frequencies of the structure. This paper reviews the advanced technique of measurements, results and the conclusion about the impact of operating civil engineering machines (road header, hydraulic hammer) during beam exploitation. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF080 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF040 | Estimated Impact of Ground Motion on HL-LHC Beam Orbit | 3052 |
|
||
Funding: Research supported by the HL-LHC project. The High Luminosity LHC (HL-LHC) will require unprecedented orbit stability at the low beta collision points (IP1 and IP5), and the effect of seismic noise might become a relevant source of luminosity loss. Many studies have been conducted in the past to characterise the actual ground motion in the LHC tunnel, and recently a few geo-phones have been installed to permanently monitor the ground stability at IP1 and IP5. An estimate of the impact of the main machine element vibration on orbit at the IPs and collimators is presented, together with a first look at the data collected by the installed geo-phones. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |