Author: Warner, A.
Paper Title Page
THYGBF2 PIP-II Injector Test Warm Front End: Commissioning Update 2943
 
  • L.R. Prost, R. Andrews, C.M. Baffes, J.-P. Carneiro, B.E. Chase, A.Z. Chen, E. Cullerton, P. Derwent, J.P. Edelen, J. Einstein-Curtis, D. Frolov, B.M. Hanna, D.W. Peterson, G.W. Saewert, A. Saini, V.E. Scarpine, A.V. Shemyakin, V.L. Sista, J. Steimel, D. Sun, A. Warner
    Fermilab, Batavia, Illinois, USA
  • C.J. Richard
    NSCL, East Lansing, Michigan, USA
  • V.L. Sista
    BARC, Mumbai, India
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Warm Front End (WFE) of the Proton Improvement Plan II Injector Test [1] at Fermilab has been constructed to its full length. It includes a 15-mA DC, 30-keV H ion source, a 2 m-long Low Energy Beam Transport (LEBT) with a switching dipole magnet, a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) with various diagnostics and a dump. This report presents the commissioning status, focusing on beam measurements in the MEBT. In particular, a beam with the parameters required for injection into the Booster (5 mA, 0.55 ms macro-pulse at 20 Hz) was transported through the WFE.
 
slides icon Slides THYGBF2 [2.434 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF024 Commissioning and Operation of FAST Electron Linac at Fermilab 4096
 
  • A.L. Romanov, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, D.J. Crawford, N. Eddy, D.R. Edstrom, E.R. Harms, J. Hurd, M.J. Kucera, J.R. Leibfritz, I.L. Rakhno, J. Reid, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari, R.M. Thurman-Keup, A. Valishev, A. Warner
    Fermilab, Batavia, Illinois, USA
 
  We report results of the beam commissioning and first operation of the 1.3 GHz superconducting RF electron linear accelerator at Fermilab Accelerator Science and Technology (FAST) facility. Construction of the linac was completed and the machine was commissioned with beam in 2017. The maximum total beam energy of about 300 MeV was achieved with the record energy gain of 250 MeV in the ILC-type SRF cryomodule. The pho-toinjector was tuned to produce trains of 200 pC bunches with a frequency of 3 MHz at a repetition rate of 1 Hz. This report describes the aspects of machine commission-ing such as tuning of the SRF cryomodule and beam optics optimization. We also present highlights of an experimental program carried out parasitically during the two-month run, including studies of wake-fields, and advanced beam phase space manipulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)