Author: McNeil, B.W.J.     [MᶜNeil, B.W.J.]
Paper Title Page
THXGBD2 Overview of Undulator Concepts for Attosecond Single-Cycle Light 2878
THPMK142   use link to see paper's listing under its alternate paper code  
 
  • A. Mak, V.A. Goryashko, P.M. Salen, G. K. Shamuilov
    Uppsala University, Uppsala, Sweden
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.J. Dunning, B.W.J. MᶜNeil, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Hebling, Z. Tibai, Gy. Tóth
    University of Pecs, Pécs, Hungary
  • Y. Kida, T. Tanaka
    RIKEN SPring-8 Center, Hyogo, Japan
  • B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: Swedish Research Council (VR, 2016-04593); Stockholm-Uppsala Centre for Free-Electron Laser Research; C. F. Liljewalchs stipendiestiftelse.
The production of intense attosecond light pulses is an active area in accelerator research, motivated by the stringent demands of attosecond science: (i) short pulse duration for resolving the fast dynamics of electrons in atoms and molecules; (ii) high photon flux for probing and controlling such dynamics with high precision. While the free-electron laser (FEL) can deliver the highest brilliance amongst laboratory x-ray sources today, the pulse duration is typically 10-100 femtoseconds. A major obstacle to attaining attosecond duration is that the number of optical cycles increases with every undulator period. Hence, an FEL pulse typically contains tens or hundreds of cycles. In recent years, several novel concepts have been proposed to shift this paradigm, providing the basis for single-cycle pulses and paving the way towards high-brilliance attosecond light sources. This article gives an overview of these concepts.
 
slides icon Slides THXGBD2 [1.758 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK060 Start-to-End Simulations of the CLARA FEL Test Facility 4430
 
  • D.J. Dunning, D. Angal-Kalinin, A.D. Brynes, L.T. Campbell, H.M. Castaneda Cortes, J.K. Jones, J.W. McKenzie, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, A.D. Brynes, D.J. Dunning, J.K. Jones, J.W. McKenzie, B.W.J. MᶜNeil, N. Thompson, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil, P.T. Traczykowski
    USTRAT/SUPA, Glasgow, United Kingdom
  • B.S. Kyle
    University of Manchester, Manchester, United Kingdom
  • B.S. Kyle
    UMAN, Manchester, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  CLARA is a new FEL test facility being developed at STFC Daresbury Laboratory in the UK, aiming to deliver advanced FEL capabilities including few-cycle pulse generation and Fourier transform limited output. Commissioning is underway on the front-end (photo-injector and first linac) while the later stages are being procured and assembled. Start-to-end (S2E) simulations of the full facility are presented, including optimisation of the accelerator setup to deliver the required properties of one of the electron beam modes specified for FEL operation. FEL simulations are performed using the Genesis 1.3 and Puffin codes and the results are compared.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK061 Isolated Few-Cycle Pulse Generation in X-Ray Free-Electron Lasers 4434
 
  • D.J. Dunning, L.T. Campbell, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • L.T. Campbell, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • D.J. Dunning, B.W.J. MᶜNeil, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  X-ray free-electron lasers are promising candidates to deliver high-brightness radiation pulses with duration significantly shorter than the present leading technique, high harmonic generation (HHG). This would extend attosecond science to probe ultrafast dynamics with even finer resolution. To do so requires breaking below a characteristic FEL timescale of typically a few hundred optical cycles, dictated by the relative slippage of the radiation and electrons during amplification. The concept of mode-locking enables this, with the mode-locked afterburner configuration predicted to deliver few-cycle pulses (~ 1 attosecond at hard X-ray). However such techniques would produce a train of closely separated pulses, while an isolated pulse would be preferable for some types of experiment. Building on previous techniques, a new concept has been developed for isolated few-cycle pulse generation and it is presented alongside simulation studies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK112 An Updated Description of the FEL Simulation Code Puffin 4579
 
  • L.T. Campbell, B.W.J. MᶜNeil, P.T. Traczykowski
    USTRAT/SUPA, Glasgow, United Kingdom
  • L.T. Campbell
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.W.J. MᶜNeil
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Puffin [1] is an unaveraged 3D FEL simulation tool with no Slowly Varying Envelope Approximation (SVEA), no undulator period averaging of the electron motion, and no periodic slicing of the electron beam, enabling simulation of broadband and high resolution FEL phenomena. It is a massively parallel code, written in modern Fortran and MPI, which scales from single core machines to HPC facilities. Its use in a number of projects since its initial description in 2012 has necessitated a number of additions to expand or improve its capability, including new numerical techniques, and the addition of a wide and flexible array of undulator tunings and polarizations along with electron beam optics elements for the undulator line. In the following paper, we provide an updated description of Puffin including an overview of these updates.
[1] L.T. Campbell and B.W.J. McNeil, Phys. Plasmas 19 093119 (2012)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)