Author: Jones, B.
Paper Title Page
TUPAL054 Experimental Measurements of Resonances near to the ISIS Working Point 1132
 
  • P.T. Griffin-Hicks, B. Jones, B.G. Pine, C.M. Warsop, M. Wright
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the pulsed spallation neutron source located at the Rutherford Appleton Laboratory in the UK. Operation is based on a 50 Hz, 800 MeV proton synchrotron, accelerating up to 3·1013 protons per pulse (ppp), which provides beam to two target stations. ISIS is beam loss limited, so to achieve greater beam intensity and optimal operation, losses must be reduced. Some beam loss may be attributed to resonance lines found in betatron tune space. These could be driven by higher order magnet field components, errors or misalignment. This paper describes work measuring losses against tune space around the ISIS working point. Experiments have been carried out to measure beam loss against tune in the ISIS synchrotron. The experiments were done at low intensity to minimise space charge and intensity effects. Resonance lines that cause beam loss can be clearly identified and provide new information about the machine. The experimental process has been automated in order to decrease experiment duration and to reduce systematic human error. MAD-X models that compare the beam envelope at different points in tune space to the beam pipe aperture are used to distinguish between losses caused by increased envelope size and losses induced by driven resonances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL055 Progress with Carbon Stripping Foils at ISIS 1136
 
  • B. Jones, H.V. Cavanagh
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS Facility at the Rutherford Appleton Laboratory produces intense neutron and muon beams for condensed matter research. The facility's 50Hz rapid cycling synchrotron accelerates protons from 70 to 800MeV to deliver a mean beam power of 0.2MW to two target stations. Since 2016, ISIS has routinely used commercially produced carbon based foils for beam stripping during charge-exchange injection. Recent experience and developments to increase useful foil lifetime are presented including in-house high temperature annealing of foils prior to use. The installation and performance of a new foil imaging system are described and, finally, the procedure to change the stripping foil is described. Issues with the current arrangements and options for redesign are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL058 Studies for Major ISIS Upgrades via Conventional RCS and Accumulator Ring Designs 1148
 
  • C.M. Warsop, D.J. Adams, H.V. Cavanagh, P.T. Griffin-Hicks, B. Jones, B.G. Pine, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK, which provides 0.2 MW of beam power via a 50 Hz, 800 MeV proton RCS. Detailed studies are now under way to find the optimal configuration for a next generation, short pulsed neutron source that will define a major ISIS upgrade in ~2031. Accelerator configurations being considered for the MW beam powers required include designs exploiting FFAG rings as well as conventional accumulator and synchrotron rings. This paper describes work exploring the latter, conventional options, but includes the possibility of pushing further toward intensity limits to reduce facility costs. The scope of planned studies is summarised, looking at optimal exploitation of existing ISIS infrastructure, and incorporating results from recent target studies and user consultations. Results from initial baseline studies for an accumulator ring and RCS located in the existing ISIS synchrotron hall are presented. Injection scheme, foil limits, longitudinal and transverse beam dynamics optimization with related beam loss and activation are outlined, as are results from detailed 3D PIC simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)