Author: Gassner, D.M.
Paper Title Page
MOPMF016 Progress on RCS eRHIC Injector Design 115
 
  • V.H. Ranjbar, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, D.M. Gassner, H.-C. Hseuh, I. Marneris, F. Méot, M.G. Minty, C. Montag, V. Ptitsyn, K.S. Smith, S. Tepikian, F.J. Willeke, H. Witte, B. P. Xiao, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We have refined the design for the Rapid Cycling Synchrotron (RCS) polarized electron injector for eRHIC. The newer design includes bypasses for the eRHIC detectors and definition of the lattice layout in the existing RHIC tunnel. Additionally, we provide more details on the RF, alignment and orbit control, and magnet specifications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBD3 eRHIC Design Status 628
 
  • V. Ptitsyn, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, K.A. Drees, A.V. Fedotov, W. Fischer, D.M. Gassner, W. Guo, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, J. Kewisch, C. Liu, H. Lovelace III, Y. Luo, F. Méot, M.G. Minty, C. Montag, R.B. Palmer, B. Parker, S. Peggs, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, W.-T. Weng, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The electron-ion collider eRHIC aims at a luminosity around 1034cm-2sec-1, using strong cooling of the hadron beam. Since the required cooling techniques are not yet readily available, an initial version with a peak luminosity of 3*1033cm-2sec-1 is being developed that can later be outfitted with strong hadron cooling. We will report on the current design status and the envisioned path towards 1034cm-2sec-1 luminosity.
 
slides icon Slides TUYGBD3 [11.790 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF006 Operation of RHIC Injectors with Isobaric Ruthenium and Zirconium Ions 672
 
  • H. Huang, E.N. Beebe, I. Blacker, J.J. Butler, C. Carlson, P.S. Dyer, W. Fischer, C.J. Gardner, D.M. Gassner, D. Goldberg, T. Hayes, S. Ikeda, J.P. Jamilkowski, T. Kanesue, N.A. Kling, C. Liu, D. Maffei, G.J. Marr, B. Martin, J. Morris, C. Naylor, M. Okamura, D. Raparia, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, P. Thieberger, K. Zeno, I.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • H. Haba
    RIKEN Nishina Center, Wako, Japan
  • T. Karino
    Utsunomiya University, Utsunomiya, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The FY18 RHIC physics program calls for Ru-Ru and Zr-Zr collisions at 100GeV using isobaric Ruthenium and Zirconium ions, each having 96 nucleons. In the injector chain, these two ions have to come from tandem and EBIS source, respectively. To reduce systematic errors in the detector, the luminosity between the two species combinations is matched as closely as possible, and the species are switched frequently. Several bunch merges are needed in the Booster and AGS to reach the desired bunch intensity for RHIC. The setup and performance of Booster and AGS with these ions are reviewed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF025 LEReC Photocathode DC Gun Beam Test Results 1306
 
  • D. Kayran, Z. Altinbas, D. Bruno, M.R. Costanzo, A.V. Fedotov, D.M. Gassner, X. Gu, L.R. Hammons, P. Inacker, J.P. Jamilkowski, J. Kewisch, C.J. Liaw, C. Liu, K. Mernick, T.A. Miller, M.G. Minty, V. Ptitsyn, T. Rao, J. Sandberg, S. Seletskiy, P. Thieberger, J.E. Tuozzolo, E. Wang, Z. Zhao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Low Energy RHIC Electron cooler (LEReC) project is presently under commissioning at Brookhaven National Laboratory (BNL). LEReC requires high average current up to 85mA and high-quality electron beam. A 400 kV DC gun equipped with a photocathode and laser system has been chosen to provide a source of high-quality electron beams. We started testing the DC gun during the RHIC run 2017. First electron beam from LEReC DC gun was delivered in April 2017 *. During the DC gun test critical elements of LEReC such as laser beam system, cathode exchange system, cathode QE lifetime, DC gun stability, beam instrumentation, the high-power beam dump system, machine protection system and controls have been tested. Average current of 10 mA for few hours of operation was reached in August 2017. In this paper we present experimental results and experience learned during the LEReC DC gun beam testing.
* D. Kayran et al., "First Results of Commissioning DC Photo-gun for RHIC Low Energy Electron Cooler (LEReC)", in Proc of ERL2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF019 Fast Readout Algorithm for Cylindrical Beam Position Monitors Providing Good Accuracy for Particle Bunches with Large Offsets 1864
 
  • P. Thieberger, D.M. Gassner, R.L. Hulsart, R.J. Michnoff, T.A. Miller, M.G. Minty, Z. Sorrell
    BNL, Upton, Long Island, New York, USA
  • A.C. Bartnik
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by Brookhaven Science Associates, LLC, under Contract No. DE-AC02-98CH10886 with the US Department of Energy.
A simple, analytically correct algorithm is developed for calculating 'pencil' beam coordinates using the signals from an ideal cylindrical beam position monitor (BPM) with four pickup electrodes (PUEs) of infinitesimal widths. The algorithm is then applied to simulations of realistic BPMs with finite width PUEs. Surprisingly small deviations are found. Simple empirically determined correction terms reduce the deviations even further. Finally, the algorithm is used to study the impact of beam-size upon the precision of BPMs in the non-linear region. As an example of the data acquisition speed advantage, a FPGA-based BPM readout implementation of the new algorithm has been developed and characterized
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)