

Studies of a scheme for low emittance muon beam production from positrons on target

Manuela Boscolo (LNF-INFN)

M. Antonelli, M.E. Biagini, O.R. Blanco-Garcia, A. Variola (INFN-LNF), S. Liuzzo, P. Raimondi (ESRF), F. Collamati (INFN-Rm1), L. Keller (SLAC), I. Chaikovska, R. Chehab (IN2P3 LAL), A. Bacci (INFN-Mi), P. Sievers (CERN)

IPAC17, Copenhagen, 14-19 May 2017

Outline

- Introduction: Muons case
- Proposal for a novel technique for muon production
- e⁺ ring with target
- Multi-turn simulations
- Conclusion and Perspectives

Muon based Colliders

- A μ⁺μ⁻ collider offers an ideal technology to extend lepton high energy frontier in the multi-TeV range:
 - No synchrotron radiation (limit of e⁺e⁻ circular colliders)
 - No beamstrahlung (limit of e⁺e⁻ linear colliders)
 - but muon lifetime is 2.2 μ s (at rest)
- Best performances in terms of luminosity and power consumption
- Great potentiality if the technology proves its feasibility:
 - Muon source
 - Fast muon cooling
 - Fast acceleration
 - $-\mu$ Collider
 - Radiation Safety (muon decay in accelerator and detector)

Idea for low emittance μ beam

Conventional production: from **proton on target**

 π , K decays from proton on target have typical **P**_µ~ **100 MeV/c** (π , K rest frame)

whatever is the boost, P_T will stay in Lab frame \rightarrow very high emittance at μ production point \rightarrow cooling needed!

Novel proposal: direct μ pair production: $e^+e^- \rightarrow \mu^+\mu^-$

just above the $\mu^+\mu^-$ production threshold ($\sqrt{s} \approx 0.212$ GeV) with minimal muon energy spread, with direct annihilation of ≈ 45 GeV e⁺ with atomic e⁻ in a thin target O(0.01 radiation length)

very small emittance at μ production point \rightarrow **no cooling** needed!

Advantages:

- **1.** Low emittance possible: $\theta\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta\mu$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

Disadvantages:

• Rate: much smaller cross section wrt protons (\approx mb) $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Parametric behaviours

M. Boscolo, IPAC17

Criteria for target design

minimize emittance maximize rate minimize positron loss \rightarrow thin target

 \rightarrow maximize density (high Z)

minimize positron loss (brem.) \rightarrow low Z

Heavy materials, thin target

- to minimize ε_{μ} : thin target ($\varepsilon_{\mu} \propto \text{length}$) with high density ρ Copper: MS and $\mu^{+}\mu^{-}$ production give about same contribution to ε_{μ} BUT high e⁺ loss (Bremsstrahlung is dominant) so $\sigma(e^{+}\text{loss}) \approx \sigma(\text{Brem+bhabha}) \approx (Z+1)\sigma(Bhabha) \rightarrow$ low maximimal $\mu^{+}\mu^{-}$ production efficiency (infinite length target) Eff_{max} $\approx \sigma_{\mu}/[(Z+1)\sigma(Bhabha)] \sim 10^{-7}$

- Very light materials, thick target
 - maximize $\mu^+\mu^-$ production efficiency ~10⁻⁵ (enters quad) \rightarrow H₂ Even for liquid targets O(1m) needed $\rightarrow \epsilon_{\mu}$ increase
- Not too heavy materials (Be, C, Li)
 - Allow low ϵ_{μ} with small e^+ loss $\text{Eff}_{\text{max}} \approx 10^{\text{-6}}$

not too heavy and thin in combination with stored positron beam to reduce the requests on positron source

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

<u>Goal:</u>

@T ≈ $10^{11} \mu/s$ Efficiency ≈ 10^{-7} (with Be 3mm)→ $10^{18} e^{+}/s$ needed @T → e^{+} stored beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture] \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

Preliminary scheme for low emittance μ beam production

Preliminary scheme for low emittance μ beam production

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

e+ ring parameter	unit	
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e⁺ bunch spacing = T _{rev} (AR)	ns	200
Beam current	mA	240
N(e⁺)/bunch	#	$3\cdot10^{11}$
U ₀	GeV	0.51
SR power	MW	120

(also 28 km foreseen to be studied as an option)

ParameterUnits6 TeV μ collider $for event for eve$				LEMC-6TeV
Deam LifergySourcethe sec in the systemno lattice yet $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016)] B reming radiusGeV0.10566 sec $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016)] B reming radiusGeV0.10566 sec $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016)] B reming radiusm658.00 mmif: LHeC like e+ sourcem1.87E+07 101-107 (2016)] B reming radiusm667 10000if: LHeC like e+ sourcem6667 10000m0.0000 28392.96with 25% mom. accept. e+ ring and ε dominated by µ productionm667 8 @ IP B eta ratio Coupling (full current) Normalised Emittance x Emittance ym0.0002 1.0thanks to very small emittance (and lower beta*) (\rightarrow lower background)Bunch length (full current) Beam current Revolution previod Nermalised Emittance x Emittance v Emittance v Revolution frequency Revolution frequency Hzmm0.1Of course, a design study is needed to have a reliable estimate of with Binch length (fall current)mm0.1Of course, a design study is needed to have a reliable estimate ofmicron micron1.68E-02 micronmicron nicron1.68E-02 micronOf course, a design study is needed to have a reliable estimate ofmicron micronmicron micron1.68E-02 micronmicron nicron1.68E-02 micron	$(T_{0})/(1)$			
draft Parameters no lattice yetJobsJobsJobsno lattice yet1.000 $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016]]GeV0.10566 sec $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016]]m658.00 c*taum $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807 101-107 (2016]]Greumference Bending radiusm667if: LHeC like e* source with 25% mom. accept. e* ring and ε dominated by µ productionMagnetic ngidity Ber P Beta ratio Coupling (full current)T1thanks to very small emittance (and lower beta*)Normalised Emittance x Emittance ym0.0002 0.0002thanks to very small (→ lower Nµ/bunch (→ lower background)Bunch length (full current) Bunch length (full current)m0.1Of course, a design study is needed to have a reliable estimate of wielle could be availed to have a reliable estimate ofm0.048 for QIP micron#Of course, a design study (is needed to have a reliable estimate of wielle could be could be ave a reliable estimate of%Pof course, a design study (is needed to have a reliable estimate of reliable estimate of%Pmof course, a design study (is needed to have a reliable estimate of#10.0is needed to have a reliable estimate of#10.0of course, a design studyNormalised Parton (is needed to have a reliable estimate of#1of course, a design studyNormalise Parton (is needed t	b lev u collider	LUMINOSITY/IP	cm⁻² s⁻¹	5.09E+34
dratt Parameters no lattice yetMuon mass fetime @ prod Lifetime @ prod Lifetime @ prod sec GeV sec 0.10566 $2.20E-06$ m $\mu^+\mu^- rate = 9 10^{10} Hz$ $\varepsilon_N = 40 nm$ if: LHeC like e ⁺ source[NIM A 807 $101-107 (2016]]$ Bending Fieldm m 658.00 m $1.87E+07$ $1/tau\mu^+\mu^- rate = 9 10^{10} Hz\varepsilon_N = 40 nmwith 25% mom. accept. e+ ringand \varepsilon dominated by \mu productionm667Bending radiusmm6678 m lpm0.0002Tm0.0002thanks to very smallemittance (and lower beta*)(\rightarrow lower background)m0f course, a design studyis needed to have areliable estimate ofm0.0012mm0.002Of course, a design studyis needed to have areliable estimate ofmm0.01mOf course, a design studymOf course, a design studymmm0.001mM = 0micronmmicron0.002micronmmicronM = 0micronm0.0048micronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicronM = 0micronmicronmicronmicronmicron$			GeV	
no lattice yetLifetime @ prodsec2.20E-06 $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807sec0.06 $\epsilon_{N} = 40 \text{ nm}$ 101-107 (2016)]m658.00 $\epsilon_{N} = 40 \text{ nm}$ 101-107 (2016)]Bending FieldT1.50if: LHeC like e ⁺ sourcegamma Lorentz factorm667with 25% mom. accept. e ⁺ ringMagnetic rigidityTm100000and ε dominated by μ production $\beta_{\kappa} @ IP$ m0.0002thanks to very small $\beta_{\kappa} @ IP$ m0.0002emittance (and lower beta*)Emittance xm4.00E-08comparable luminosity withBunch length (zero current)mm0.1lower N μ /bunchBunch length (full current)m0.1of course, a design studySouth frequencyHz5.00E+04of course, a design studyNameer of IP#1.0of course, a design studyNameer of IP#1.00is needed to have a reliable estimate ofmicron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron1.68E-02micron	due ft De ve ve et e ve			
no lattice yetLifetime @ prodsec2.20E-06 $\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz[NIM A 807m658.00 $\epsilon_{N} = 40 \text{ nm}$ 101-107 (2016)]m6000 $\epsilon_{N} = 40 \text{ nm}$ 101-107 (2016)]Bending FieldTif: LHeC like e ⁺ sourcem667with 25% mom. accept. e ⁺ ringMagnetic rigidityTand ε dominated by μ production $\beta_{\varepsilon} @ IP$ mthanks to very smallm0.0002emittance (and lower beta*) $\beta_{\varepsilon} @ IP$ mcomparable luminosity withBunch length (zero current)mlower N μ /bunchBunch length (zero current)mm(\rightarrow lower background)Bunch length (full current)mOf course, a design studyis needed to have a reliable estimate ofmof course, a design studyNertelevolution period w @ IPm $\sigma_{v} @ IP$ m1.00 $\sigma_{v} @ IP$ m0.048 $\sigma_{v} @ IP$ m0.048 $\sigma_{v} @ IP$ m1.00 $\sigma_{v} @ IP$ micron1.68E-02 $\sigma_{v} @ IP$ <	draft Parameters		GeV	
$\mu^{+}\mu^{-} rate = 9 \ 10^{10} \ Hz \qquad [NIM A 807 \epsilon_{N} = 40 \ nm \qquad 101-107 (2016)] if: LHeC like e^{+} source mathematical by \mu production frame production thanks to very small emittance (and lower beta*)comparable luminosity with lower N\mu/bunch (\rightarrow lower background) for course, a design study is needed to have a reliable estimate of reliable PACIZ reli$		II	sec	
$ \begin{array}{cccccc} c^* tau & m & 658.00 \\ m & 1.87E+07 \\ 1/tau & Hz & 1.60E+01 \\ 1/tau & Hz & 1.60E+01 \\ 1.60E+01 & m & 6000 \\ r^* tau & 1/tau & Hz & 1.60E+01 \\ 1.60E+01 & m & 6000 \\ r^* tau & 1.87E+07 \\ 1.101-107 (2016) \\ r^* tau & 1.60E+01 \\ r^$	no lattice vet			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $,			
$ \begin{array}{c c} \mu^+\mu^- \mbox{rate} = 9 \ 10^{10} \ \mbox{Hz} & [NIM A 807 \\ 101-107 \ (2016)] \\ \mbox{Bending Field} \\ \mbox{Bending radius} \\ \mbox{if: LHeC like e^+ source} \\ \mbox{with 25\% mom. accept. e^+ ring} \\ \mbox{and ϵ dominated by μ production} \\ \mbox{With 25\% mom. accept. e^+ ring} \\ \mbox{and ϵ dominated by μ production} \\ \mbox{thanks to very small} \\ \mbox{emittance (and lower beta*)} \\ \mbox{comparable luminosity with} \\ \mbox{lower Nμ/bunch} \\ \mbox{lower background} \\ \mbox{of course, a design study} \\ \mbox{is needed to have a} \\ \mbox{reliable estimate of} \\ \mbox{Of course, a design study} \\ \mbox{is needed to have a} \\ \mbox{reliable estimate of} \\ \mbox{Mither of IP} \\ \mbox{micron IPP} \\ \mbox{micron In68E-02} \\ \mbox{micron IPP} \\ \mbox{micron IPP} \\ \mbox{micron IPP} \\ \mbox{micron IPP} \\ \mbox{micron IAPP} \\ micro$				
$ \begin{split} & \epsilon_{N} = 40 \text{ nm} & 101-107 (2016)] \\ & \epsilon_{N} = 40 \text{ nm} & 101-107 (2016)] \\ & \text{if: LHeC like e^+ source} & \text{Magnetic rigidity} & \text{Tm} & 1667 \\ & \text{Magnetic rigidity} & \text{Tm} & 10000 \\ & \text{Magnetic rigidity} & \text{Gamma Lorentz factor} & \text{Nturns before decay} \\ & \text{and } \epsilon \text{ dominated by } \mu \text{ production} & \\ & \epsilon_{N} \otimes \mu pro$				
$\epsilon_N = 40 \text{ nm}$ Let of (corr)if: LHeC like e ⁺ sourceBending radiusm667with 25% mom. accept. e ⁺ ring and ϵ dominated by μ productionMagnetic rigidity Gamma Lorentz factorT m10000and ϵ dominated by μ production $\beta_k @ IP$ $Beta ratiom0.00020.00023113.76thanks to very smallemittance (and lower beta*)comparable luminosity withI ower N\mu/bunchm1.00.00020.00020.0002by @ IPBeta ratiom1.41E-12mm1.41E-12m1.0thanks to very smallemittance (and lower beta*)comparable luminosity withI ower N\mu/bunchBunch length (zero current)m0.1bunch length (zero current)Bunch length (full current)Beam currentRevolution frequencyRevolution previodNumber of bunchesm0.1Of course, a design studyis needed to have areliable estimate ofN. Particle/bunchmicron#1.00off course, a design studyis needed to have areliable estimate ofm1.00micronmicron1.68E-02micronoff course, a design studymicronmicronmicronmicron1.68E-02micronmicronmicron1.68E-02micronmicronmicron1.68E-02micronoff course, a design studymicronmicronmicronmicron1.68E-02micronmicronmicron1.68E-02micronmicronmicron1.68E-02micron$	$\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz [NIM A 807			
if: LHeC like e+ source with 25% mom. accept. e+ ring and ε dominated by μ productionMagnetic rigidity Gamma Lorentz factor N turns before decay $g_x @ IP$ Beta ratio Coupling (full current) Normalised Emittance x Emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (→ lower background)Magnetic rigidity Gamma Lorentz factor N turns before decay $g_x @ IP$ Beta ratio Coupling (full current) Normalised Emittance x Emittance x Emittance x Emittance ratioT m10000 28392.96 3113.76 0.0002 0.0002 m 0.0002 0.0002 m 0.0002thanks to very small emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (→ lower background)Magnetic rigidity Gamma Lorentz factor Normalised Emittance x Emittance x Emittance ratioT m10000 28392.96 3113.76 0.0002 m 0.0002 m 1.0Of course, a design study is needed to have a reliable estimate ofOf course, a design study is needed to have a reliable estimate ofMagnetic rigidity Gamma Lorentz factor Number of IP sy @ IP mT m10000 28392.96 m mOf course, a design study is needed to have a reliable estimate ofMagnetic rigidity Gamma Lorentz factor Number of IP sy @ IP radT m10000 28392.96 3113.76 m mOf course, a design study is needed to have a reliable estimate ofMagnetic rigidity Gamma Lorentz factor mT m10000 28392.96Of course, a design study is needed to have a reliable estimate ofMagnetic rigidity gamma Lorent is participation incom radT m1000 2000 2000 2000 2000 <tr< th=""><th>$\epsilon_{\rm m} = 40 \rm nm$</th><th>-</th><th>-</th><th></th></tr<>	$\epsilon_{\rm m} = 40 \rm nm$	-	-	
with 25% mom. accept. e+ ring and ϵ dominated by μ productionGamma Lorentz factor N turns before decay $\beta_x @ IP$ 28392.96 3113.76and ϵ dominated by μ production $\beta_x @ IP$ $B_y @ IP$ m m 0.00020.0002 0.0002thanks to very small emittance (and lower beta*) comparable luminosity with lower N μ /bunchMormalised Emittance x Emittance ratiom0.0002 0.0002lower N μ /bunch (\rightarrow lower background)Bunch length (zero current)m0.1Of course, a design study is needed to have a reliable estimate ofSouth Particle/bunch red Pm0.1N. Particle/bunch withN. Particle/bunch micron#1.0Of course, a design study is needed to have a reliable estimate of% PmMathematical contractionmicron micron1.68E-02 micron1.68E-02 micronof course, a design studymicron red Pmicron micron1.68E-02 micronof course, a design studymicron red Pmicron micron1.68E-02 micronof course, a design studymicron red Pmicron micron1.68E-02 micronof end to have a reliable estimate ofmicron micron1.68E-02 micron8.39F-05				
with 25% mom. accept. e+ ring and ϵ dominated by μ productionN turns before decay $\beta_x @ IP$ Beta ratio3113.76and ϵ dominated by μ production $\beta_x @ IP$ $By @ IP$ Beta ratiom0.0002 0.0002thanks to very small emittance (and lower beta*) comparable luminosity with lower N μ /bunch (\rightarrow lower background)Normalised Emittance x Emittance x Emittance ratiom4.00E-08 m0.1Sunch length (zero current)m0.10.1Bunch length (full current) Beam currentmm0.10.1Bunch length (full current) Beam currentmm0.10.1Bunch length (full current) Beam currentmm0.10.1Bunch length (full current) Beam currentmm0.10.1Bunch length (full current) Beam currentm0.0480.1Bunch length (full current) Beam currentm0.10.1Bunch length (full current) Beam currentm0.10.1Beam current Revolution period Number of bunches#10.1Namber of IP Toy @ IP or @ IP#1.000.1micron micron1.68E-02 micron1.68E-02 micron0.1Berton IP AMENDON IPACI7#1.08E-02 micron0.1Base-02 micronmicron micron1.68E-02 micron	IT: LHEC like e ⁺ source		1 111	
and ε dominated by μ production $\beta_x @ IP$ $\beta_y @ IP$ Beta ratio Coupling (full current)m 0.0002 0.0002 thanks to very small emittance (and lower beta*) comparable luminosity with lower N μ /bunch (\rightarrow lower background)Normalised Emittance x Emittance y Emittance ratiom $4.00E-08$ m $(\rightarrow lower background)$ Bunch length (zero current)mm 0.11 mm $(\rightarrow lower background)$ Bunch length (full current)mm 0.11 mm $(\rightarrow lower background)$ Bunch length (full current)mm 0.11 mm $(\rightarrow lower background)$ Bunch length (full current)mm 0.11 mm $(\rightarrow lower background)$ Bunch length (full current)mm 0.11 mm $((\rightarrow lower background)$ Bunch length (full current)mm 0.11 mm $((((((((((((((((((($	with 25% mom, accept, e ⁺ ring	-		
and z dominated by μ productionBy @ IPm0.0002by @ IPBeta ratio1.0thanks to very smallCoupling (full current)96100emittance (and lower beta*)Normalised Emittance xm4.00E-08comparable luminosity withEmittance ym1.41E-12lower Nµ/bunchBunch length (zero current)mm0.1(→ lower background)Bunch length (full current)mm0.1Beam currentmA0.048Revolution frequencyHz5.00E+04Revolution periods2.00E-05Number of bunches#1N. Particle/bunch#1.00Number of IP#1.00is needed to have a reliable estimate ofmicron1.68E-02micron <td< td=""><td></td><td>_</td><td>m</td><td></td></td<>		_	m	
thanks to very small emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (\rightarrow lower background)Beta ratio Coupling (full current) Normalised Emittance x Emittance x Emittance y Emittance ratio1.0 4.00E-08 m mOf course, a design study is needed to have a reliable estimate of01.0Of course, a design study is needed to have a reliable estimate of01.0Of course, a design study is needed to have a reliable estimate of01.0Of course, a design study is needed to have a reliable estimate of00Of course, a design study is needed to have a reliable estimate of00Image: Design study is needed to have a reliable estimate of00	and ϵ dominated by μ production			
thanks to very small emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (\rightarrow lower background)Coupling (full current) Normalised Emittance x Emittance x Emittance y Emittance ratio%100 $(\rightarrow lower background)$ Bunch length (zero current)mm0.1 $(\rightarrow lower background)$ Bunch length (full current)mm0.1 $(full current)$ $(full current)$ mm0.1 $(full current)$ $(full current)$ $(full current)$ mm $(full current)$ $(full current)$ $(full current)$ $(f$				
thanks to very small emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (\rightarrow lower background)Normalised Emittance x Emittance x Emittance y Emittance ratiom4.00E-08 m 1.41E-12 m $(\rightarrow lower background)$ Bunch length (zero current)mm0.1 $(\rightarrow lower background)$ Bunch length (full current) Beam current Revolution frequency Revolution period Number of bunchesmm0.1Of course, a design study is needed to have a reliable estimate ofOf course, a design study $\sigma_x @ IP$ micron $\sigma_x @ IP$ micron $\sigma_x @ IP$ 1.00match $\sigma_x @ IP$ micron $\sigma_x @ IP$ micron $\sigma_x @ IP$ micron $\sigma_x @ IP$ 1.00			%	
emittance (and lower beta*) comparable luminosity with lower Nµ/bunch (\rightarrow lower background)Emittance x Emittance y Emittance ratiom1.41E-12 mBunch length (zero current)mm0.1Bunch length (full current)mm0.1Beam current Revolution frequency Revolution periodmA0.048Of course, a design study is needed to have a reliable estimate of% @ IP vy @ IPmicron1.68E-02 mM@ElPscolo IPAC17micron1.68E-02 mmicron1.68E-02 m	thanks to very small	Normalised Emittance x	m	
comparable luminosity with lower Nµ/bunchEmittance ratio1.0 $(\rightarrow lower background)$ Bunch length (zero current)mm0.1 $(\rightarrow lower background)$ Bunch length (full current)mm0.1Beam current Revolution frequencymA0.048Contractioner frequency is needed to have a reliable estimate ofHz5.00E+04Structure frequency reliable estimate of11Contractioner frequency reliable estimate ofHz5.00E+04Contractioner frequency micron11Contractioner frequency reliable estimate of11Contractioner frequency rade11Contractioner frequency rade11Contractio	•		m	
Comparable formulationBunch length (zero current)mm0.1lower Nµ/bunchBunch length (full current)mm0.1(\rightarrow lower background)Bunch length (full current)mm0.1Beam currentmA0.048Revolution frequencyHz5.00E+04Revolution periods2.00E-05Number of bunches#1N. Particle/bunch#6.00E+09Number of IP#1.00 $\sigma_x @ IP$ micron1.68E-02 $\sigma_y @ IP$ micron1.68E-02 <th>emillance (and lower bela")</th> <th>-</th> <th>m</th> <th></th>	emillance (and lower bela")	-	m	
InterpretationInterpretationInterpretation $(\rightarrow \text{lower background})$ Bunch length (full current)mm0.1Bunch length (full current)mA0.048Beam currentmA0.048Revolution frequencyHz5.00E+04Revolution periods2.00E-05Number of bunches#1N. Particle/bunch#6.00E+09Number of IP#1.00 $\sigma_x @ IP$ micron1.68E-02 $\sigma_y @ IP$ micron1.68E-02 <th>comparable luminosity with</th> <th>Emittance ratio</th> <th></th> <th>1.0</th>	comparable luminosity with	Emittance ratio		1.0
Mathematical actionMathematical actionMathematical actionBeam currentmA0.048Revolution frequencyHz5.00E+04Revolution periods2.00E-05Number of bunches#1N. Particle/bunch#6.00E+09Number of IP#1.00ox @ IPmicron1.68E-02oy @ IPmicron1.68E-02oy @ IPmicron1.68E-02ox @ IPmicron1.68E-02ox @ IPmicron1.68E-02oy @ IPmicron1.68E-02<	lower Nµ/bunch	Bunch length (zero current)	mm	0.1
Revolution frequency Revolution periodHz5.00E+04 2.00E-05Of course, a design study is needed to have a reliable estimate ofNevolution period#1N. Particle/bunch Number of IP $\sigma_x @ IP$ $\sigma_y @ IP$ #1.00 micron1.68E-02 micronTeliable estimate of#1.68E-02 micron8.39E-05	$(\rightarrow lower background)$	Bunch length (full current)	mm	0.1
Revolution periods2.00E-05Number of bunches#1N. Particle/bunch#6.00E+09Number of IP#1.00is needed to have a reliable estimate of $\sigma_x @ IP$ micron $\sigma_y @ IP$ micron1.68E-02 $\sigma_y @ IP$ mic		Beam current		
Of course, a design study is needed to have a reliable estimate of P Number of bunches Number of bunches Number of bunches Number of IP $\sigma_x @ IP$ $\sigma_y $			Hz	
Of course, a design study is needed to have a reliable estimate ofN. Particle/bunch# $6.00E+09$ $x @ IP$ $y @ IP$ <th></th> <th></th> <th></th> <th></th>				
Of course, a design study is needed to have a reliable estimate ofNumber of IP#1.00 $\sigma_x @ IP$ $\sigma_x @ IP$ micron1.68E-02 $\sigma_y @ IP$ $\sigma_y @ IP$ micron1.68E-02				
is needed to have a $\sigma_x @ IP$ micron 1.68E-02 reliable estimate of $\sigma_y @ IP$ micron 1.68E-02 reliable estimate of $\sigma_y @ IP$ micron 1.68E-02 reliable estimate of $\sigma_y @ IP$ micron 1.68E-02	Of course a design study			
reliable estimate of $\sigma_y @ IP$ micron 1.68E-02 reliable estimate of $\sigma_y @ IP$ rad 8.39E-05				
reliable estimate of M@PEscolo IPAC17 rad 8.39F-05				
performances ov @ IP rad 8.39E-05	reliable estimate of		-	
	performances	ov @ P	rad	8.39E-05

Radiological hazard due to neutrinos from a muon collider

Colin Johnson, Gigi Rolandi and Marco Silari

Key topics for this scheme

- Low emittance and high momentum acceptance 45 GeV e⁺ ring
- O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production
- High rate positron source
- High momentum acceptance muon accumulator rings

"Low emittance 45 GeV positron ring

120

100

s [m]

140

160

180

-6

-8

0

20

40

60

80

circumference 6.3 km: 197 m x 32 cells (no injection section yet)

Parameter	Units	
Energy	GeV	45
Circumference	m	6300
Coupling(full current)	%	1
Emittance x	m	5.73×10^{-9}
Emittance y	m	5.73×10^{-1}
Bunch length	mm	3
Beam current	mA	240
RF frequency	MHz	500
RF voltage	GV	1.15
Harmonic number	#	10508
Number of bunches	#	100
N. particles/bunch	#	3.15×10^{11}
Synchrotron tune		0.068
Transverse damping time	turns	175
Longitudinal damping time	turns	87.5
Energy loss/turn	GeV	0.511
Momentum compaction		1.1×10^{-4}
RF acceptance	%	± 7.2
Energy spread	dE/E	1×10^{-3}
SR power	MW	120

Physical aperture=5 cm constant

no errors

Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our studies

M. Boscolo, IPAC17

Multi-turn simulations

- 1. Initial 6D distribution from the equilibrium emittances
- 2. 6D e⁺ distribution tracking up to the target (AT and MAD-X PTC)
- 3. tracking through the target (with Geant4beamline and FLUKA and GEANT4)
- 4. back to tracking code

At each pass through the muon target the e+ beam

- gets an angular kick due to the multiple Coulomb scattering, so at each pass changes e⁺ beam divergence and size, resulting in an emittance increase.
- undergoes bremsstrahlung energy loss: to minimize the beam degradation due to this effect, D_x=0 at target
- in addition there is natural radiation damping (it prevents an indefinite beam growth)

Preliminary low- β IR for muon target insertion

- @target location:
 - $D_x \approx 0$
 - **low**-β
- Further optimizations are underway:
 - match the transverse minimum beam size with constraints of target thermo-mechanical stress
 - match with other contributions to muon emittance (production, accumulation)
 - dynamic and momentum aperture can be optimized

e+ lifetime with Be target

Be thickness [mm]

1

10

10 <u>⊦</u>_____ 0.1

2-3% e+ losses happen in the first turn Boscolo, IPAC17

e+ ring with target: beam evolution in the 6D phase space

e+ beam with 3 mm Be target along the ring (not at IR center in this example)

Evolution of e+ beam size and divergence

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by **bremsstrahlung**) and transverse (dominated by **multiple scattering**) phase space due to target; in **blue** the combination of both effects (realistic target)

Some bremsstrahlung contribution due to residual dispersion at target multiple scattering contribution in line with expectation: $\sigma_{MS} = \frac{1}{2} \sqrt{n_D} \sigma'_{MS} \beta$ one pass contribution due to the target: $\sigma'_{MS} = 25 \mu rad$

M. Boscolo, IPAC17

n_D number of damping turns

Muon emittance

 $\epsilon(\mu) = \epsilon(e^+) \oplus \epsilon(MS) \oplus \epsilon(rad) \oplus \epsilon(prod) \oplus \epsilon(AR)$

$ \begin{array}{l} \epsilon(e^{+}) &= e^{+} \mbox{ emittance} & \mbox{knobs:} \\ \epsilon(MS) &= \mbox{multiple scattering contribution} \\ \epsilon(rad) &= \mbox{energy loss (brem.) contribution} & \mbox{hobs:} \\ \end{array} $		would like all contributions of same size
$\epsilon(\text{prod}) = \text{muon production contribution} \\ \epsilon(\text{AR}) = \text{accumulator ring contribution} \\ \text{AR optics \& target} \\ \text{with constraints from target survival}.$	ϵ (MS) = multiple scattering contribution ϵ (rad) = energy loss (brem.) contribution ϵ (prod) = muon production contribution	knobs: n $\beta_x \beta_y$ @target & target material n $\beta_x \beta_y D_x$ @target & target material E(e ⁺) & target thickness AR optics & target

now: $\epsilon(\mu)$ dominated by $\epsilon(MS) \oplus \epsilon(rad) \rightarrow lower dispersion & lower <math>\beta$ -functions at target with beam spot at the limit of the target survival

also test different material

- crystals in channeling better: $\varepsilon(MS)$, $\varepsilon(rad)$, $\varepsilon(prod)$ (also gain in lifetime)
- light liquid jet target better: $\varepsilon(MS)$, $\varepsilon(rad)$

(also gain in lifetime & target thermo-mechanical characteristics)

μ Accumulator Rings considerations

isochronous optics with high momentum acceptance ($\delta \ge 10\%$) optics to be designed

Target considerations

Beam size as small as possible (matching various emittance contribution), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise move target (for free with liquid jet) and e⁺ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise
 - Be, C
 [Kavin Ammigan 6th High Power Targetry Workshop]
 - Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 μm, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot
- Liquid target: better wrt power removal (200kW)
 - Li, difficult to handle lighter materials (H, He)
 - LLi jets examples from neutron production, Tokamak divertor

(200 kW beam power removal seems feasible), minimum beam size to be understood

Conclusion and Perspectives

- First design of low emittance e⁺ ring with preliminary studies of beam dynamics
- Optimization requires other issues to be preliminary addressed:
 - target material & characteristics
 - e⁺ accelerator complex

muon accumulator rings design

Preliminary studies for a low emittance muon source are promising We will continue to optimize all the parameters, lattices, targets, etc. in order to assess the ultimate performances of a muon collider based on this concept M. Boscolo, IPAC17

References

- 1. M. Antonelli, P. Raimondi, Snowmass report: Ideas for muon production from positron beam interaction on a plasma target, 2013, http://www.slac.stanford. edu/econf/C1307292/
- 2. D.M. Kaplan, T. Hart, P. Allport, Producing an intense, cool muon beam via e+ e- annihilation, arXiv:0707.1546 [physics.acc-ph].
- 3. M. Antonelli, M. Boscolo, R. Di Nardo and P. Raimondi, "Novel proposal for a low emittance muon beam using positron beam on target," Nucl. Instrum. Meth. A **807** (2016) 101
- 4. M.Antonelli, E.Bagli, M.Biagini, M.Boscolo, G.Cavoto, P. Raimondi and A. Variola, "Very Low Emittance Muon Beam using Positron Beam on Target," TUPMY001, IPAC'16, Korea (2016).
- 5. W.A.Barletta and A.M .Sessler, "Characteristics of a high- energy μ+ μ– collider based on electroproduction of muons", Nucl. Instrum. Meth. A **350** (1994) 36.
- 6. M.A. Palmer, "The US muon accelerator program", TUPME012, IPAC'14, Germany (2014).
- 7. L.Rinolfi *et al.* NIM B **309** (2013)50-55
- 8. B.Nash *et al.,*"New Functionality for Beam Dynamics in Accelerator Toolbox (AT)", IPAC'15, USA (2015).
- 9. see for example: D. J. Summers, "Muon acceleration using fixed field, alternating gradient (FFAG) rings," Int. J. Mod. Phys. A **20** (2005) 3861
- 10. R. Chehab, "Angular collection using solenoids", NIM A **451** (2000) 362-366.

Low EMittance Muon Accelerator team

- M. Antonelli, M. Biagini, M. Boscolo, S Dabagov, M. Dreucci, A. Ghigo, S. Guiducci, L. Pellegrino, M. Rotondo, A.Variola, O.R. Blanco-Garcia, O. Frasciello (INFN-LNF)
- F.Bedeschi, F. Cervelli, R.Tenchini (INFN-Pi), G.Tonelli (Univ.& INFN-Pi)
- A. Bertolin, U. Dosselli, L. Sestini, M. Morandin (INFN-Pd)
- D. Lucchesi, A. Wulzer, M. Zanetti (Univ.& INFN-Pd)
- N. Pastrone (INFN-To)
- F. Anulli, G. Cavoto, F. Collamati, L. Palumbo (INFN-Roma1)
- E. Bagli, V. Guidi, A. Mazzolari, L. Bandiera (INFN-Fe)
- M. Prest, E. Vallazza (Uni-Insubria&INFN)
- P. Raimondi, S. Liuzzo, N. Carmignani (ESRF)
- R. Di Nardo, P. Sievers (CERN)
- I. Chaikovska, R. Chehab (LAL-Orsay)
- L. Keller, T. Markiewicz (SLAC)

Tests with e⁺ beam

Use tertiary 45 GeV e⁺ beam in CERN North area (H4) (1 week of beam time July 2017, founded by CSN1-INFN)

- Low intensity (one by one e⁺ tracking) with crystals and amorphous targets:
 - measure beam degradation (emittance energy spectrum)
 - measure produced photons flux and spectrum
- **High intensity** (up to 5 x 10⁶ /spill) with amorphous targets:
 - measure muon production rate and
 - muons kinematic properties