

Correction of β -beating due to beam-beam for the LHC and its impact on dynamic aperture

WEOAB2

Luis Medina^{1,2}, R. Tomás², J. Barranco³, X. Buffat¹, Y. Papaphilippou¹, T. Pieloni³

¹ Universidad de Guanajuato, León, Mexico
 ² CERN-BE-ABP, Geneva, Switzerland
 ³ EPFL, Laussane, Switzerland
 ¹ Imedinam@cern.ch

8th International Particle Accelerator Conference

17 May 2017

This work is supported by the European Circular Energy-Frontier Collider Study, H2020 programme under grant agreement no. 654305, by the Swiss State Secretariat for Education, Research and Innovation SERI, and by the Beam project (CONACYT), Mexico.

Introduction

When the bunches of two beams of a particle collider come into proximity, they interact electromagnetically and give rise to **beam-beam** (**BB**) effects

- Tune shift
- Tune spread
- β -beating

- Beam stability and dynamic aperture
- Etc.

Motivation: beam-beam effects in the LHC and HL-LHC

- Impact on performance
 - $\pm 9\% \beta^*$ change for HL-LHC
 - Direct repercussion on luminosity \rightarrow luminosity imbalance between the main experiments
- Impact on protection system

Compensation techniques

- Other compensation techniques:
 - Electron beam lens

- Current-bearing wires
- Correction of $\beta\text{-beating}$ by compensation of the **BB linear kick** with local **magnets**
 - First step for a correction scheme involving higher multipoles in view of the HL-LHC
 - First measurements and preliminary test in the LHC (P. Gonçalves et. al., TUPVA030)

Beam-beam kick

$$\left\{ \begin{array}{c} \Delta x' \\ \Delta y' \end{array} \right\} = -\frac{2Nr_0}{\gamma} \frac{1}{r^2} \left\{ \begin{array}{c} x \\ y \end{array} \right\} \left[1 - \exp\left(-\frac{r^2}{2\sigma^2}\right) \right]$$

- *r* Radial distance from the test particle to the center of the opposite beam, $r = \sqrt{x^2 + y^2}$
- σ Beam size (assumed round)
- N Bunch population
- r₀ Classical particle radius
- γ $\;$ Relativistic Lorentz factor $\;$
- d Beam separation

Example: LHC interaction region

Example: LHC interaction region – beams

Example: LHC interaction region – matching section

Example: LHC interaction region – dipoles

Example: LHC interaction region – inner triplet

Example: LHC interaction region – beam envelope

Head-on and long-range beam-beam expansion

Head-on (HO) beam-beam

• Linearisation of kick for small amplitudes:

$$\left\{\begin{array}{c} \Delta x'|_{r\to 0}\\ \Delta y'|_{r\to 0}\end{array}\right\} = -\frac{Nr_0}{\gamma\sigma^2} \left\{\begin{array}{c} x\\ y\end{array}\right\}$$

- Same effect on both planes
- Beam-beam parameter as a measure of the induced tune shift:

$$\xi_{bb} \equiv \frac{\mathsf{d}(\Delta r')}{\mathsf{d}r} \frac{\beta^*}{4\pi} = \frac{Nr_0\beta^*}{4\pi\gamma\sigma^2}$$

• Horizontal and vertical

Head-on (HO) beam-beam: LHC

Long-range (LR) beam-beam: LHC (16 collisions per IP side)

• **Taylor expansions** up to second order around (*d*, 0) (horizontal crossing):

$$\begin{aligned} \Delta x' &= K_0 + (K_1 + K_1')\Delta x + (K_2 + K_2')(\Delta x)^2 - K_2(\Delta y)^2, \\ \Delta y' &= -K_1\Delta y \qquad -2K_2\Delta x\Delta y, \end{aligned}$$

where K_i and K'_i are functions of

$$E_d \equiv \exp\left(-rac{d^2}{2\sigma^2}
ight)$$

(See Appendix A)

• **Taylor expansions** up to second order around (*d*, 0) (horizontal crossing):

$$\Delta x' = K_0 + (K_1 + K_1')\Delta x + (K_2 + K_2')(\Delta x)^2 - K_2(\Delta y)^2$$

$$\Delta y' = -K_1\Delta y - 2K_2\Delta x\Delta y,$$

where K_i and K'_i are functions of

$$E_d \equiv \exp\left(-rac{d^2}{2\sigma^2}
ight)$$

(See Appendix A)

•

• **Taylor expansions** up to second order around (*d*, 0) (horizontal crossing):

$$\Delta x' = K_0 + (K_1 + K_1')\Delta x + (K_2 + K_2')(\Delta x)^2 - K_2(\Delta y)^2$$

$$\Delta y' = -K_1\Delta y - 2K_2\Delta x\Delta y,$$

where K_i and K'_i are functions of

$$E_d \equiv \exp\left(-rac{d^2}{2\sigma^2}
ight)$$

(See Appendix A)

Procedure and results

Procedure

- Re-matching of optics (β_{x,y}, α_{x,y}) at the start / IP / end of each IR (separately)
 - Eight degrees of freedom per beam per IP
 - Eight variables: 4 left-right pairs of magnets
- Re-matching of

Tunes to (64.31, 59.32) Chromaticities to 2

Choice of magnets

- Correction in **both beams**
- Magnet strengths for counter-rotating beams: $K_n \rightarrow (-1)^n K_n$ (0: dipole, 1: quad, etc.)

• Quadrupole, octupole, etc. components of the BB cannot be directly compensated for both beams using common magnets.

Choice of magnets: Matching quadrupoles for HO

Choice of magnets: Common sextupoles for LR

Reduction of RMS β -beating due to HO-BB or LR-BB

13/16

Reduction of RMS β -beating due to HO-BB and LR-BB

- Reduction of RMS β -beating to < 0.15 %
- $\bullet\,$ Tunes reduced by 0.01, chromaticities increased by 2 units \rightarrow Re-matched to nominal
- Correction with an identical process for the $opposite\ beam$ \rightarrow Similar results

Stability of the HO-BB and LR-BB correction

- Correcting sextupole strengths have opposite sign to the sextupolar term of the BB kick.
- Non-linear elements
 - Long-term stability?
- Dynamic aperture (DA), via single-particle tracking.
- Little impact on DA $> 5.5\sigma$ for all angles

Conclusions and outlook

Conclusions and Outlook

- Beam-beam interactions can limit the machine performance.
 - Luminosity imbalance, machine protection
- Induced β-beating can be corrected, at least partially, by matching local magnet strenghts to the multipolar terms of the BB kick expansion.
- Successful application to the current LHC optics (RMS beating $<1\,\%)$
 - Linear HO corrected with matching quadrupoles
 - LR quadrupolar term corrected via sextupole feed-down
- Compensation scheme involving common sextupoles has negligible impact on DA.
- \bullet First measurements and test of correction in LHC \rightarrow anyalsis on-going
- Extension to higher orders, and to the **HL-LHC**:
 - Compensation of beam-beam octupolar component via feed-down from decapoles (not present in the LHC)

Thank you