

MYRRHA Research and Transmutation Endeavour

The MYRRHA LEBT Commissioning & Space Charge Compensation Experiments

F. Bouly, D. Bondoux, M. Baylac (LPSC\IN2P3\CNRS) Jorik Belmans, Dirk Vandeplassche (SCK•CEN) Nicolas Chauvin, Frédéric Gérardin (CEA)

 N_{2020}

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

HORI7

IPAC'17 Conference Tuesday, May 16, 2017 Copenhagen, Denmark

SCK•CE

MYRRHA

1

Multi-purpose hybrid Research Reactor for High-tech Applications At Mol (Belgium)

Demonstrate the physics and technology of an Accelerator Driven System (ADS) for transmuting longlived radioactive waste

High power proton beam (up to 2.4 MW)

Proton energy	600 MeV
Peak beam current	0.1 to 4.0 mA
Repetition rate	1 to 250 Hz
Beam duty cycle	10 ⁻⁴ to 1
Beam power stability	< \pm 2% on a time scale of 100ms
Beam footprint on reactor window	Circular Ø85mm
Beam footprint stability	< \pm 10% on a time scale of 1s
# of allowed beam trips on reactor longer than 3 sec	10 maximum per 3-month operation period
# of allowed beam trips on reactor longer than 0.1 sec	100 maximum per day
# of allowed beam trips on reactor shorter than 0.1 sec	unlimited

Extreme reliability

to minimise thermal stress and fatigue on target, reactor core,...

to ensure 80 % availability (reactor re-start procedures : ~20 h).

16/05/2017

• Reliabilty guidelines for an ADS accelerator design:

- Robust design i.e. robust optics, simplicity, low thermal stress, operation margins...
- Redundancy (serial where possible, or parallel) to be able to tolerate/mitigate failures
- Repairability (on-line where possible) and efficient maintenance schemes
- Layout of the MYRRRHA linac : Double injector + Superconducting linac

2

F. Bouly - The MYRRHA LEBT - TUOBA2 - Copenhagen, IPAC'17

16/05/2017

• The Low Energy Beam Transfer line (LEBT) is the first 3 meters of the MYRRHA accelerator

- Ensure the 'safe' beam transport from the source to the RFQ :
 ➢ Minimise the beam losses → Increased Reliability
- Condition the beam for the RFQ

16/05/2017

LEBT Functions

- \succ Required parameters at the RFQ entrance : $\varepsilon_{\text{RMS.norm.proton}} \leq 0.2 \, \pi.\text{mm.mrad}$
- 'Clean' the proton beam from other species (H_2^+, H_3^+)
 - > The Ion source produces protons but also H_2^+, H_3^+ (ionisation of H_2 gas)

F. Bouly - The MYRRHA LEBT - TUOBA2 - Copenhagen, IPAC'17

• Give/Create the temporal beam time structure ('holes' / pseudo-pulsed beam / power mitigation)

<u>Proposed MYRRHA beam time structure for operation:</u> -> long blue pulses are sent to the reactor (mean power is adjusting with pulse length) -> short red ones are sent to ISOL experiment

• Design, Construction & Commissioning funded by EU projects (MAX, MARISA, MYRTE) and SCK-CEN

- > LPSC (CNRS) : solenoid design, collimation , vacuum chamber, experimental area, part of the control system,...
- SCK-CEN : Chopper + collimation cone, ...
- > Cosylab (+ADEX) : Specific control system developments

16/05/2017

TUPAB092 : *MYRRHA Control System Development*, R. Modic et al.

Compact design : ~ 3 meters long with two solenoids
 A minimum of elements/magnet to tune (Reliability)
 Simple design (Reliability)
 Minimise the number of electrostatic elements (Reliability)
 Shorter Space Charge Compensation transients than in a longer version
 No 'clean' ions separation to ensure a direct proton current monitoring
 J-L Biarrotte, MAX technical note + Deliverable 1.2

- Defocusing effect : Coulomb repulsion of charged particles inside the beam
- 2 contributions (Lorentz):
 Electrostatic : repelling Force
 - Magnetic : attractive Force (charged particles in movement)

$$F_r = \frac{(1 - \beta_L^2)}{\beta_L} \frac{qI}{2\pi \varepsilon_0 c} \cdot \frac{r}{R^2} (r < R)$$

 β_L : reduced speed ε_0 : vacuum permittivity *q* : charge I : beam current

• Complex phenomena, difficult to model, depends on many parameters : influence of the vacuum chamber walls, beam transverse and longitudinal distribution, different species/ions, residual gas interaction, etc.

- A solution to compensate the beam diverging effect in the LEBT :
- \rightarrow Use the Ionisation of the residual gas in the vacuum chamber.

F. Bouly - The MYRRHA LEBT - TUOBA2 - Copenhagen, IPAC'17

7

Courtesy of N. Chauvin

The LEBT installed at LPSC Grenoble

• Goal : tune the solenoids & steerers settings to optimise the transmission through the LEBT and to match the beam into the RFQ

• Solenoid scan on the beam transmission

LEBT tuning

- >I_{source} set at 9 mA, hard to regulate below this value (dropout in an other plasma mode)
- > Beam current & Twiss parameters measured 26.2 cm after the hole of the collimation cone (FC + Allisson scanner)

16/05/2017

Requirement at RFQ input -> β =0.04 mm/mrad & α = 0.88

 $\frac{Estimation: 262.5 \text{ mm after the RFQ injection hole}}{->\beta\sim2.9 \text{ mm/mrad} \quad \& \ \alpha\sim-12.5}$

Transmission map : **Tuned LEBT**

HORIZON 2020

10

- Gas injection (pressure, type) has an effect on the transmission in steady state and therefore on the space charge neutralisation
- Already observed on several experiements :
- _ R. Hollinger et. al., "High current proton beam investigation at the SILHI-LEBT at CEA Saclay ", TU3001, Proceedings of LINAC2006, Knoxville, Tennessee, USA,2006
- D. Winklehner, D. Leitner, "A space charge compensation model for positive DC ion beams." Journal of Instrumentation 10.10 (2015): T10006.
- _ R. Ferdinand et al., "Space-charge neutralization measurement of a 75 keV, 130 mA hydrogen-ion beam", Proceedings of PAC'97, Vancouver, B.C., Canada, 1997

- Evolution of the Emittance in the middle of the LEBT as function of the gas pressure
 - \succ the focussing strength of the solenoid is kept constant (I_{sol}=69A)
 - Argon or Krypton gas injected
 - > The beam current is kept constant at the emittance measurement location : $I_{proton} \approx 8.5$ mA

• In steady state we observed that the emittance decreases while residual gas pressure is increased

Space charge compensation

For a given focussing strength of the solenoid :
 → the beam divergence is changing with the gas pressure

$P = 9.2 \ 10^{-6} \ mbar$

P =5.4 10⁻⁵ mbar

HORIZON 2020

Chopper & SCC Transients

- Space charge compensation time measured as function of the pressure (Kr injection)
- Beam current measured with the ACCT in the final collimation cone
- \succ $\tau_{95\%}$ time to reach 95 % of the maximum value
- Chopper rise time : ~400 ns

LEBT final tuning

F. Bouly - The MYRRHA LEBT - TUOBA2 - Copenhagen, IPAC'17

16

2020

HOR

CONCLUSIONS & Future work

- The MYRRHA LEBT is fully commissioned
- Effect of gas on Space charge compensation experimentally measured
- > Tuned to provide the right beam parameters (Twiss, emittance) at RFQ input
- Analysis of experimental data for SCC studies in progress
- > Model development With WARP for a better understanding of the Physical process of SCC in the LEBT
 - As studied for example on LINAC4 C. A. Valerio-Lizarraga et al., Phy.Rev. ST Accelerator & beams, 2015
 - Assess the effect of Emittance-meter on measurement accuracy
 - Phd thesis of Frédéric Gérardin at CEA Saclay
- > To anticipate on the future re-tuning & operation

• Next step : LEBT will be moved to Louvain-la-Neuve for RFQ and injector commissioning (2018)

Thank you to

Julien ANGOT, Dominique BONDOUX, Maud BAYLAC, Jorik BELMANS, Jean-Luc BIARROTTE, Thierry CABANEL, Mohammed CHALA, Nicolas CHAUVIN, Victor AMOR DURAN, Wouter DE COCK, Jean-Marie DE CONTO, Pierre DE LAMBERTERIE, Rémi FAURE, Dominique FOMBARON, Christian FOUREL, Emmanuel FROIDEFOND, Frédéric GERARDIN, Julien GIRAUD, Miguel DE LA IGLESIA, Calogero GERACI, Yólanda GÓMEZ-MARTÍNEZ, Étienne LABUSSIERE, Jean-Claude MALACOUR, Jan MALEC, Isaías MARTÍN-HOYO, Luis MEDEIROS ROMÃO, Myriam MIGLIORE, Robert MODIC, Luc PERROT, Solenne REY, Sébastien ROUDIER, Roberto SALEMME, Didier URIOT, Aljaz VRH, Dirk VANDEPLASSCHE, Olivier ZIMMERMANN

Thank You for your Attention

F. Bouly - The MYRRHA LEBT - TUOBA2 - Copenhagen, IPAC'17

