8th International Particle Accelerator Conference COPENHAGEN, DENMARK, 2017 MAY 14 – 19

Review of Permanent Magnet Technology for Accelerators

Chamseddine BENABDERRAHMANE bchams@esrf.fr **Insertion Devices and Magnets Laboratory**

Joel Chavanne and Marie Emmanuelle Couprie

OUTLINE

Introduction

Principal characteristics of permanent magnets (PM)

- Magnetic performance •
- Material temperature stability •
- Radiation damage *

Recent PM development in accelerators

- High gradient PM Quadrupoles *
- •

Conclusion and perspectives

Longitudinal Gradient PM Dipoles for low emittance storage rings (DLSR)

The European Synchrotron

INTRODUCTION

Permanent magnets are widely used in our daily life

Consumer electronic industry

Automotive industry

renewable energy industry

Health industry

INTRODUCTION

Permanent magnets are widely used in our daily life

Consumer electronic industry

Automotive industry

PM Family	Discovered
Alnico	30's
Ferrites	50's
SmCo	60's
NdFeB	80's

renewable energy industry

Health industry

INTRODUCTION

Permanent magnets are widely used in our daily life

Consumer electronic industry

Automotive industry

PM Family	Discovered
Alnico	30's
Ferrites	50's
SmCo	60's
NdFeB	80's

Permanent magnets are used in accelerators mainly for insertion devices and for some dedicated devices

renewable energy industry

Health industry

ESRF

Magnetic performance

- Sm₂Co₁₇ and Nd₂Fe₁₄B used for Accelerator devices
- High remnant magnetization for Nd₂Fe₁₄B
- High resistance to radiation damage for Sm₂Co₁₇

Туре	B _r (T)	H _{cj} (kA/m)
Sm ₂ Co ₁₇	1.05 – 1.15	1500 – 2100
Nd ₂ Fe ₁₄ B	1.06 – 1.45	900 - 3000

PRINCIPAL CHARACTERISTICS OF PERMANENT MAGNETS

Magnetic performance at low temperature

Higher performance (B_r and H_{ci}) at cryogenic temperature

- $Nd_2Fe_{14}B$ and $Pr_2Fe_{14}B$ used at cryogenic temperature
- $Nd_{2}Fe_{14}B$ performance (B_r) limited by the Spin Reorientation Transition around 135 K • $Pr_{2}Fe_{14}B$ performance (B_r) not limited by the SRT and can be cooled to 77 K

Туре	B _r (%/C)	Н _{сј} (%/С)
Sm ₂ Co ₁₇	- 0.03	- 0.2
$Nd_2Fe_{14}B$	- 0.1	- 0.6
$Pr_2Fe_{14}B$	- 0.1	- 0.6

Cryogenic Permanent Magnet Undulator (CPMU)

0.0

T. Hara et al., *PRSTAB*, *7*, *050702* (2004)

IPAC 17 - Copenhagen 14-19 May 2017 - C. Benabderrahmane Page 7

Samples provided by Konit (China)

Material temperature stability

Radiation damage

- Radiation exposure leads to demagnetization of permanent magnet
 - Sm_2Co_{17} has a higher resistance to radiation damage (high coercivity H_{ci})
 - Demagnetization depends on magnet shape and working point in the magnet
- Effect similar to that of a thermal partial demagnetization
- Undulator damaged by radiation in several facilities (ESRF, APS, PETRA III)
- The radiation damage risk has increased with the development of small gap devices (in-vacuum IDs)
- CPMUs Have better resistance to radiation damage risks (very high coercivity H_{ci})

T. Bizen, ERL 2011, Tsukuba, Japan, p. 121-126, (2011) **T. Bizen,** *NIMA*, 467-468, p. 185-189, (2001)

High gradient quadrupoles are of great interest for

> Colliders

Free Electron Lasers

Low emittance storage rings

High gradient quadrupoles are of great interest for

> Colliders

Free Electron Lasers

Low emittance storage rings

Permanent magnets are a good candidate for this type of device

Small surfaces with high magnetisation No power consumption and no water cooling

IPAC 17 - Copenhagen 14-19 May 2017 - C. Benabderrahmane Page 11

Fixed gradient PM quadrupoles

Ultra high gradient

Very compact devices

Homogeneity very sensitive to PM quality

- Remnant magnetization variation
- Magnetization angle variation
- Mechanical assembly

Halbach permanent magnet quadrupole

$$G = 2Br\left(\frac{1}{r_i} - \frac{1}{r_e}\right)K$$

K depends on the number of segments M

$$r_{i} = 10 \text{ mm}$$

 $r_{e} = 20 \text{ mm}$
 $B_{r} = 1.25 \text{ T}$
 $G = 125 \text{ T/m}$

K. Halbach, *NIM 169, p. 1-10, (1980)*

Fixed gradient PM quadrupoles

PPM Halbach PMQ

Gradient	500 T/m
Bore radius	3 mm
Tunability	No

T. Eichner et al., *PRST*, *10*, *082401* (2007) **J.K. Lim** et al., *PRST*, *8*, 072401 (2005)

Hybrid Halbach PMQ

Gradient	115 T/m
Bore radius	7 mm
Tunability	No

T. Mihara et al., *SLAC* – *PUB* – *10248*, *February 2004*

2.3 cm

Fixed gradient PM quadrupoles

Dominated Iron quadrupole

Good field homogeneity

Moderate gradient field

No Tunability

Gradient	80 T/m
Bore radius	12.5 mm
Tunability	No

Field correction shim

r = 7 mm, $(b_n / b_2) \cdot 10\,000$ $b_3 = -1.3$ $b_4 = 3$ $b_6 = -8.4$ $b_{10} = -7$

P. N'gotta et al., *PRAB*, *19*, *122401 (2016)*

Variable gradient PM quadrupoles

Hybrid or dominated iron devices High and variable gradient Different type of gradient tunability

- Displacement parts
- Rotation parts
- Additional coils

Precision and reliability depends on motors and encoders Magnetic center shift with gradient variation

Variable gradient PM quadrupoles

- Dominated iron quadrupole
- Fixed poles and yoke, displacement of all PMs
- Moderate and variable gradient
- A motor for the displacement of each PM
- Magnetic center shift calibrated using PM position

Bore radius	6.5 mm	
Max Gradient	115 T/m	R
Min Gradient	13 T/m	
Magnetic center shift	2.5 µm	

PMs linear retraction

S. C. Gottschalk et al., PAC05, Knoxville, USA, 2005

Variable gradient PM quadrupoles

- Dominated iron quadrupole
- Fixed poles and vertical displacement of PMs and yoke
- Moderate and variable gradient
- High Magnetic center shift
- One motor and gearboxes for the displacement of both parts

Bore radius	13.6 mm
Max Gradient	60 T/m
Min Gradient	15 T/m
Magnetic center shift	100 µm

B.J.A. Shepherd et al., IPAC13, Shanghai, China, 2013

Displacement parts (PMs and yoke)

Variable gradient PM quadrupoles

- Hybrid quadrupole
- Halbach rings, 1 fixed Hybrid ring and 4 rotated PPM rings
- High and variable gradient
- Magnetic center shift corrected by shimming outer rings

Bore radius	10 mm	25
Max Gradient	120 T/m	E 20
Min Gradient	17 T/m	01 atre
Step	7 T/m	Inte
Magnetic center shift	20 µm	0 turned 0 "Sw Contribut

Y. Iwashita et al., EPAC06, Edinburgh, Scotland, 2006

Variable gradient PM quadrupoles

- Hybrid compact quadrupole
- Fixed Hybrid ring and 4 rotated PM cylinders
- High and variable gradient
- Magnetic center shift corrected by translation stages
- Magnetic measurement with different methods
- 7 quadrupoles with lengths from 26 mm to 100 mm

Bore radius	6 mm	200
Max Gradient	210 T/m	THE 160 - 140 -
Min Gradient	110 T/m	120 0 50 100 150 200 250 Theta [deg] Gradient versus tuning magnets angle
Magnetic center shift	20 µm	with (Δ) TOSCA and (\Box) RADIA. (Line) sin

(Line) sinus t

F. Marteau et al., APL, submitted (2017) J.T.Volk et al., PAC01, Chicago, USA, 2001

Variable gradient PM quadrupoles

- Dominated iron quadrupole
- Combined fixed PMs and coils
- Ultra high and variable gradient
- ✤ Good field quality < 0.1 % in 1 mm GFR</p>
- Less compact device with coils
- Power consumption

Bore radius	4.12 mm
Max Gradient	> 500 T/m
Min Gradient	100 T/m

M. Modena et al., IPAC12, New Orleans, USA, 2012 **M. Modena**, Workshop at CERN, Geneva, Switzerland, 2014

FIELD GRADIENT [T/m]

- Rotation systems are more efficient and more compact *
- •

Dominated iron with linear displacement have better field quality Magnetic center shift depends on the gradient variation systems

High gradient PM quadrupoles are still dedicated devices

The trend is towards Low Emittance Storage Rings

New facilities

MAX IV in Sweden – 330 pm.rad Commissioning done

Sirius in Brazil – 250 pm.rad Construction in progress

ESRF-EBS will be 7BA 6 GeV lattice

ESRF today has DBA 6 GeV lattice

Upgrade facilities using the existing building

ESRF-EBS in France – 140 pm.rad Commissioning expected in 2020

APS-U in USA – 70 pm.rad Commissioning expected in 2023

SPring-8-II in Japan – 149 pm.rad Upgrade studies on progress

Emittance $\propto 1/(N \text{ dipoles})^3$

Increase number of dipoles

Red=DQ: Combined dipole quadrupole Blue=LG: Dipole with longitudinal gradient

Compact electromagnets at MAX IV

PM dipole have advantages over electromagnet one

- Compact devices

- No power supply and no cooling systems Better reliability (no water and power supply failures) Less control systems, cables and noise
- Important reduction in operation cost

Challenges for permanent magnet Dipoles

- Magnetic field design
- Magnetic field tuning and shimming
- Temperature dependence
- Demagnetization risks
- Series production

Estimation of electric power cost for dipoles in 2016

PM dipole have advantages over electromagnet one

- Compact devices
- No power supply and no cooling systems Better reliability (no water and power supply failures)
- Less control systems, cables and noise
- Important reduction in operation cost

Challenges for permanent magnet Dipoles

- Magnetic field design
- Magnetic field tuning and shimming
- Temperature dependence
- Demagnetization risks
- Series production

Estimation of electric power cost for dipoles in 2016

There are almost no PM devices used as standard magnets in accelerator lattices, the only exception being the Fermilab recycler

G.W. Foster et al., EPAC98, Stockholm, Sweden, 1998

Dipole		
Gap	mm	25.5 – 30
Iron length	mm	1788
Permanent magnet		Sm ₂ Co
Iron		Pure irc
Number of dipoles		128

Dipole constituted by 5 modules

IPAC 17 - Copenhagen 14-19 May 2017 - C. Benabderrahmane Page 27

ESRF-EBS LG Dipole

Prototypes to confirm calculated performance and to define the series production process

- Permanent magnet assembly
- Magnetic field strength and quality
- Longitudinal field integral fringe
- Temperature compensation

Two modules with 0.62 T and 0.41 T

PM assembly needs special tools Field quality depends on pole parallelism Shimming required to reach targeted field Longitudinal gap to be defined for flat field

Flat field at longitudinal gap $g_s = 5 \text{ mm}$

Tolerance: $\Delta B/B < 10^{-3}$ @13 mm

- Dominated by PM material temperature coefficient
- Compensated by passive Fe-Ni shunts
 - The Fe-Ni shunts are ~ saturated
 - The magnetization in Fe-Ni has large temperature dependence

Field integral measurements on PM DL modules NdFeB PM, Sm₂C0₁₇ PM

ESRF Dipole module

dB/B/dT after compensation:< 40 ppm/C

Dipole		
Gap	mm	25
Iron length	mm	1750
Permanent magnet		Sm ₂ Co ₁₇
Iron		Pure iron
Number of dipoles		176

Dipole constituted of 3 modules

The LGB designs are now being modified.

Spring-8-II LG Dipole

Courtesy of T. Watanabe

Outer plates for B-field tuning "Nose structures" for smooth B-field transition between modules Temperature compensation

(14 % B-field tuning by outer plates.)

Courtesy of T. Watanabe

ESRF

Dipole		
Gap	mm	26 -
Iron length	mm	82
Permanent magnet		Nd ₂ F
Iron		Pure
Number of dipoles		2

28

- e₁₄B
- iron

BC Strength Т 3.2 - 0.58

Vertical field vs. longitudinal position

Courtesy of Lin Liu

SIRIUS BC Dipole

Series production in progress

ESRF PM dipoles assembly area

Vertical postion [mm]

Procurement of different parts

- 6 tons of PM material (>15000 blocks)
- 660 Mechanical parts (poles and yokes)

Development and test of PM assembly tools

- Easy to use tooling
- Management of PM forces
- Robustness for long term use

PM assembly and thermal compensation

- Assembly of PMs on each module
- Fe-Ni amount depends on module type
- Adjustment of the position of the poles
- Magnetic measurement and shimming
 - Measurement and shimming of each model to reach targeted field
 - Measurement and shimming of PM dipole to reach final performances
 - Fiducialisation of the dipole

DB/B

ESRF stretched wire magnetic bench

PM Dipole ready for use

47 dipoles out of 128 are assembled

Dedicated high gradient and compact PM quadrupoles have been developed

- Lack of space
- Limitation of electromagnet quadrupole
- Energy saving could be an important criteria
 - Quadrupoles for low heat to air facilities
 Accelerators with a large number of quadrupoles
- PM LG Dipoles development is in progress
- Iattice PM multipole magnets R&D for Low emittance storage rings
 - Dominated iron quadrupole with precise pole shape
 Improve the magnetic center shift with gradient tunability
 Limited tenability quadrupoles with low consumption air coils
 Sextupole and octupole magnets require large tunability

Resistive magnet close to limit (quadrupoles)

Complicated vacuum chamber technology with small magnet aperture

Resistive magnet close to limit (quadrupoles) •

Complicated vacuum chamber technology with small magnet aperture

In- vacuum

Cryogenic cooling (LN₂) PrFeB magnets

Resistive magnet close to limit (quadrupoles) •

Complicated vacuum chamber technology with small magnet aperture

Cryogenic cooling (LN₂)

MANY THANKS FOR YOUR ATTENTION

