The Eighth International Particle Accelerator Conference

Discovery of the Island of Stability for Super Heavy Elements

Yuri OGANESSIAN Flerov Laboratory of Nuclear Reactions Joint Institute for Nuclear Research

> IPAC'17 May19, 2017. Copenhagen, Denmark

For more than 22 centuries

```
From Democritus (460 - 371 BC...)
to Dalton (1766 - 1844)
```

it was assumed that the objects around us are made up of tiny indivisible particles - atoms interacting with each other.

In 1808

36 elements were known only

63 elements were already know by that time

	r	р у	пп	ы	э	ле	ме	н	r o	в	
Pagna	0	1	п	ш	IV	V	VI	VII		VIII	
0	Навотовесі					· · · · · ·					
1	Короний	Водород H 1,008	-	-	-	-	-	-			
2	Ferneli He 4,0	Лэтэй Lii 7,03	Septorodi Be 9,1	Бор В 11,0	Уляерод С 12,0	A307 N 14,01	Кислород О 16,00	Фтор F 19,0			
3	Heon Ne 19,9	Harpedi Na 23,05	Marrook Mg 24,36	Azociologica Al 27,1	Kpenenel Si 28,2	Фосфор Р 31,0	Cepa \$ 32,06	Xnop C135,45			
4	Apron Ar 38	Kamdi K 39,15	Kamandi Ca.40,1	Chargedi Se 44,1	Тэлтын Ті 48,1	Ванадий V 51,2	Xpost Cr 52,1	Mapruseu Ma 55,1	Желето Fe 55,9	Кобылат Со 59	Hanara Nii 59
5		Meza Cu 63,6	Linex Zn 65,4	Farrodk Ga 70,0	Гермалай Ge 72,5	Manasax As 75	Селен Se 79,2	Epom Br 79,95			
6	Крастон К r 81,8	Pythemek Rb 85,5	Crponasti Sr 87,6	Иттрий У 89,0	Царахнай Zr 90,6	Huofedi Nib 94,0	Mountaex Mo 96,0	-	Рутенові Ru 101,7	Pomoli Rh 103,0	Neoneosi Pd 106,5
7		Cepeõpo Ag 107,93	Kapok Cd112,4	Horeadi In 115,0	Omoso Sn 119,0	Сурьма 5b 120,2	Tennyp Te 127	Иод 1 127			
8	Ксенов Хе 128	Lietadi Cs 132,9	Bapask Ba 137,4	Лантан La 138,9	Llepodi Ce 140,2	-		-		-	-
9		-	-	-	-	-	-	-			
10	-	-	-	Иттербий Ув 173	-	Тактыл Та 183	Вольфран W 184	-	Ocuusi Os 191	Mprezsek Er 193	filmernese Pt 194,8
11											
12	-	-	Pazzok Ra 225	-	Тория Th 232,5	-	Урык U 238,5				

Dmitri Mendeleev 1869

Genuine D.I.Mendeleev's Table

Discovery of the Electron

In 1897, J.J. Thomson used a cathode ray tube to deduce the presence of a negatively charged particle.

Cathode ray tubes pass electricity through a gas that is contained at a very low pressure.

86 elements were already known by that time

In attempts to describe the properties of nuclear matter, George Gamow made a daring assumption that atomic nucleus may be similar to a drop of positively charged liquid.

George Gamow 1928

In fact, the density of nuclear liquid is 10^{15} times more than that of water

Charged Liquid Drop Model of the atomic nucleus.

G. Gamow, 1928.

We will be discussing today the problem of synthesis and properties of extremely heavy nuclei to get answers to questions about:

- How big the nuclei can be?
- What of proton and neutron number they may have?
- Where is the mass limit of the nuclei?
- How many chemical elements can be and what are their properties?

Shell and magic numbers

Yuri Oganessian. Discovery of the Island of Stability for SHE. May 19, 2017, Copenhagen, Denmark

=____)0 Map of the shell corrections (in MeV) to the liquid drop potential energy

R. Smolańczuk, Phys. Rev. C 56 (1997) 812

Experimenters rushed to find this island 15-year long assault on the "Islands of Stability" 1970-1985 Los Alamos (USA) **Berkeley (USA)** Dubna (JINR) Oak Ridge (USA) Mainz (Germany) **Darmstadt (Germany) Orsay (France)** Würenlingen (Switzerland) Tokyo (Japan) some later

The task was:

To find the method of producing/detecting of superheavy elements Search in nature: earth/lunar objects, cosmic rays, artificial synthesis of superheavy elements

Use and develop a setup for synthesizing SHE High-flux reactor, even nuclear explosion, powerful accelerator of heavy ions,

To develop setups and detectors for separating and registering the rarest events of formation and decay of superheavy nuclei

separator/detector, spectrometer, chemical methods, etc.

To have much patience

To work for many years, being ready to rearrange on the way and improve the experimental technique

The task was:

To have much parts and improve To work for many years, being ready to rearrange on the way and improve the experimental technique

Reactions of synthesis

Reactions of synthesis

Our new approach greatly complicates the experiment

artificial element from flux nuclear reactor

target

to separator

projectiles

rare and very expensive isotope of Ca

artificial element from flux nuclear reactor

target

from accelerator

to separator

projectiles

rare and very expensive isotope of Ca

artificial element from flux nuclear reactor

target

from accelerator

to separator

projectiles

rare and very expensive isotope of Ca

artificial element from flux nuclear reactor

to separator

rare and very expensive isotope of Ca

accelerator

from

artificial element from flux nuclear reactor

to separator

rare and very expensive isotope of Ca

accelerator

from

expensive isotope of Ca

from

Experiments on the synthesis of SHE with ⁴⁸Ca-beam at FLNR (JINR)

Experiments on the synthesis of Z=116 nuclei in the reaction ²⁴⁸Cm+⁴⁸Ca

Experiments on the synthesis of SHE in ⁴⁸Ca induced reaction

Voyage to SUPERHEAVY Island

an Article from SCIENTIFIC AMERICAN

JANUARY 2000 VOL. 282 NO. 1

The synthesis of element 114 confirmed decades-old theoretical predictions of a little patch of nuclear stability in a sea of short-lived superheavy nuclei

Summary decay properties of the isotopes of elements 112, 114, 116 and 118 observed in ²³⁸U, ^{240,242, 244}Pu, ^{245, 248}Cm and ²⁴⁹Cf + ⁴⁸Ca reactions

Alpha - decay

Alpha - decay

Spontaneous fission

even-even isotopes

Odd-Z Superheavy Nuclei

Synthesis of the Isotopes with Z =113, 115 and 117

Proton number

Proton number

In solution

Berkelium -249 at hot cell

The purified product contained 22.2 Mr Bk-249

Bk(NO₃)₃Product

Dubna Gas-Filled Recoil Separator DGFRS

Heavy Ion Accelerator, FLNR

ORIACRO

Yuri Oganessian. Discovery of the Island of Stability for SHE. May 19, 2017, Copenhagen, Denmark

HE ASPITE

Summary decay properties of the isotopes of elements 113, 115, and 117 observed in ²³⁷Np, ²⁴³Am and ²⁴⁹Bk + ⁴⁸Ca reactions

Discovery of the Heaviest Nuclei with Z=112-117 [Confirmations 2007-2014]

A/Z	Setup	Laboratory	Publications
²⁸³ 112	SHIP	GSI Darmstadt	Eur. Phys. J. A32, 251 (2007)
²⁸³ 112	COLD	PSI-FLNR (JINR)	NATURE 447, 72 (2007)
^{286, 287} 114	BGS	LBNL (Berkeley)	P.R. Lett. 103, 132502 (2009)
^{288, 289} 114	TASCA	GSI – Mainz	P.R. Lett. 104, 252701 (2010)
^{292, 293} 116	SHIP	GSI Darmstadt	Eur. Phys. J. A48, 62 (2012)
^{287, 288} 115	TASCA	GSI – Mainz	P.R. Lett. 111, 112502 (2013)
^{293, 294} 117	TASCA	GSI – Mainz	P.R. Lett. 112, 172501 (2014)
^{292, 293} 116	GARIS	RIKEN Tokyo	Accelerator Progress Rep. (2013)

With Z >40% larger than that of Bi, we see an impressive extension in nuclear survivability.

Although SHN are at the limits of Coulomb stability,

- shell stabilization lowers ground-state energy,
- creates a fission barrier,
- and thereby enables SHN to exist.

The fundamentals of the modern theory concerning the mass limits of nuclear matter have obtained experimental verification

Super Heavy Atoms

Chemistry of the SHE

Relativistic Contraction

Calculated by P. Dirac and V. Fock in non-relativistic approximation

What's next?

In order to expand the field of research it is necessary first of all to increase the sensitivity of experiments

SHE-Factory

joining of efforts

Isotope production:

Cm-248 Bk-249 Cf-251

To be increased 10 times New accelerator High beam dose of : Ca-48 Factor 10-20 Ni-64

Depend of target durability SC- recoil separator equipped with Gas Catcher On-line separator & sophisticated Detectors

Factor 3-5

is closely linked to the intellect

August 2014, Dubna

new

accelerator

Yuri Oganessian. Discovery of the Island of Stability for SHE. May 19, 2017, Copenhagen, Denmark

Exp. 3

EX

Yu. Oganessian. "Nuclear at the Mass Limit, Discovery of SHN" Seminar on NP of INPh April 4, 2017, MSU, Moscow