

The Energy Efficiency of High Intensity Proton Driver Concepts

Vyacheslav P. Yakovlev The 8th International Particle Accelerator Conference – IPAC'17 19 May 2017 On behalf of the Working Group of the Eucard² Workshop on Proton Driver Efficiency :

- J. K. Grillenberger, Paul Scherrer Institut, 5232 Villigen, Switzerland,
- S-H. Kim, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- **M. Yoshii**, KEK and JAEA J-PARC Center, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
- M. Seidel, Paul Scherrer Institut, 5232 Villigen, Switzerland

Outline

Motivation

□ PSI Cyclotron of the High Intensity Proton Accelerator Facility

- Superconducting Pulsed Linac of the Spallation Neutron Source (SNS).
- □ Japan Proton Accelerator Research Complex (J-PARC)
- □ Summary

Motivation

- High power proton driver accelerators are used to generate secondary particles at high intensities, such as pions, muons, neutrons and ultra-cold neutrons or neutrinos.
- The applications of these facilities have a broad spectrum in the fields of particle physics and condensed matter physics. Another industrial application under discussion is Accelerator Driven Subcritical Reactors (ADS).
- The production of megawatt-class proton beams implies the consumption of electrical power on a large scale.

Operating and planned facilities that utilize a high intensity proton driver accelerator.

	Neutrino	Muons	Neutrons	ADS	RIB's	operating
Cyclotron	$Dae \delta alus^1$	PSI-HIPA TRIUMF	PSI-HIPA	AIMA ² TAMU-800 ³	TRIUMF RIKEN	concept study
RCS		J-PARC	J-PARC ISIS CSNS			
FFAG				KURRI +ongoing studies ⁴		
s.c. Linac	PIP II ⁵	PIP II ⁵	SNS ESS ISNS ⁶	ADSS ⁷ CIADS ⁸	FRIB	

1 Decay-at-Rest Experiment for δcp studies At the Laboratory for Underground Science, MIT/INFN-Cat. et al

2 Accelerators for Industrial & med. Applications, reverse bend cyclotron, AIMA company

3 Cyclotron 800MeV, flux coupled stacked magnets, s.c. cavities, strong focusing channels, Texas A&M Univ. 4 FFAG studies, e.g. STFC

5 SRF linac, Proton Improvement Plan-II (PIP-II), Fermilab, Batavia

6 Indian Spallation Neutron Source, Raja Ramanna Centre of Advanced Technology, Indore, India

7 Accelerator Driven Sub-critical System at Bhaba Atomic Research Centre (BARC), Mumbai, India

8 China Initiative Accelerator Driven System, Huizhou, Guangdong Prov. & IMP, Lanzhou, China

- For each new generation of accelerator facilities we want better flux, rate, brightness, luminosity.
 - \rightarrow typically needs more power!
- Acceptance of these projects by authorities and the public becomes increasingly difficult.
- \rightarrow Thus, one needs to work on that:
 - Improve efficiency of accelerators
 - Demonstrate efforts to improve efficiency to funding organizations / to public
 - Adapt our facilities to new sustainable energy production
- New projects and operating facilities must focus on improving the energy efficiency with a higher priority.

This is especially true for linacs suggested for ADS-type applications, which may have to deliver >10 MW beams.

(generic) Powerflow in Accelerators

figure of merit:

secondary particles, X-rays on sample per KWh

🛟 Fermilab

Eucard² Workshop on Proton Driver Efficiency

Eucard² ?

EUCARD = Integrating Activity Project for coordinated Research and Development on Particle Accelerators, cofunded by European commission.

- idea: comprehensive approach to cover the entire power chain from Grid to secondary radiation at the user.
- goal: Assess state of the art and development potential for each stage.

(comparison of potential of each link in the chain) R&D recommendations in each field.

□ The goal :

- "Efficiency drivers" for different types of the proton drivers
- Wall-plug efficiency limits for the MW-range proton drivers
- The ways of the efficiency improvement
- New technologies should be developed for this.

Proton Drivers:

- GeV-energy range
- MW-power range
- Applications: neutrinos, muons, neutrons, ADS.

- Three operating accelerators for GeV- energy scale, MW beam power scale facilities are considered:
- Cyclotron of the High Intensity Proton Accelerator Facility, PSI;
- Superconducting RF (SRF) Pulsed Linac of the Spallation Neutron Source, ORNL ;
- RCS and Main Ring of the Japan Proton Accelerator Research Complex, J-PARC.
- The power consumption breakdown will be shown for three facilities, in order to understand the major energy efficiency drivers.
- "Efficiency": we consider a fraction of grid power converted to beam power, i.e., the ratio of the delivered beam power over the accelerator power consumption, including RF, magnetic system, cooling/cryogenics, but neglecting auxiliary systems and experimental facilities.

$$\eta = \frac{P_{beam}}{P_{magnet} + P_{RF} + P_{cooling} + P_{cryogenics}}$$

depend on beam loading

🛠 Fermilab

Cyclotron of the High Intensity Proton Accelerator Facility, PSI

The 590MeV isochronous cyclotron at PSI with a diameter of 15m

Grid to Beam Power

Copper Cavities at PSI

- f = 50.6 MHz
- U_{max} = 1.2 MV (presently 0.85 MV)
- $Q = 4.8 \cdot 10^4$
- Transfer of up to 400 kW power to the beam per cavity

Wall plug to beam efficiency:

- AC/DC: 90%
- DC/RF: 64%
- RF/beam: 55%
- All over: 32%

Power consumption breakdown excluding the auxiliary systems.

- The magnet system consumes 2.6 MW;
- The entire consumption of the RF system is 4.5 MW;
- The Ohmic losses in the cavies are about 1.2 MW;
- Losses in the RF sources are 1.5 MW;
- Losses in the rectifier are 400 kW.
- Cooling circuit efficiency is 94%.

The entire efficiency is 18%

The beam current increase up to 3 mA leads to the beam loading increase and consequently, efficiency increase up to 24%.

"Efficiency drivers":

- Losses in the magnets (34%)
 - Utilization of the superconducting sector magnets. The world's first ring superconducting cyclotron is the 2.6 GeV cyclotron, which provides acceleration of a broad spectrum of ions up to Uranium. It is in operation at RIKEN Nishina.
- Losses in RF sources (21%).
- Losses in the cavities (15%).

Superconducting RF (SRF) Pulsed Linac of the Spallation Neutron Source, ORNL

Breakdown of electric power consumption by systems during 1.4 MW operation; 26.3 MW

Subsystems of the Linac

• Front-end

- Ion source, RFQ, Medium energy beam transport
- Klystron Gallery
 - Transmitter, vacuum, control, magnet power supply, local pumps, local HVAC, etc.

Conventional Utility Building

- Compressed air handler, Cooling tower, Chilled water, Hot water
- Accelerating Structures

High Voltage Converter Modulator (HVCM)

- Located in the Klystron Gallery, but has separate electric feeder
- 15 HVCMs

Cryogenic Plant

- Warm compressors, 4K cold box, 2K cold box, etc.

SNS High Power RF configuration

🚰 Fermilab

- 15 HVCMs
 - 3 HVCMs for 1 RFQ and 6 DTL (2.5 MW 402,5 MHz klystron x 7)
 - 4 HVCMs for 4 CCL (5 MW 805 MHz klystron x 4)
 - 8 HVCMs for 81 SRF cavities (0.55 MW 805 MHz klystron x 81)

Pulse Structure at SNS

Power flow from grid to beam during 1.4 MW operation (CCL module 4)

Power consumption breakdown (CCL module 4)

Beam

- Transformer, switch
- HVCM loss
- HVCM setting
- RF source
- Cavity loss, mismatching, filling, control
 Cooling

Power flow from grid to beam during 1.4 MW operation (Ex. SRF cavity; 20d)

Power consumption breakdown (SRF cavity; 20d)

Areas for further improvement

Currently SNS is working on those

- RF and SRF
 - Cavity performance (general)
 - Settling time (high power machine)
 - Control margin (general)
 - Fill time (high Qex machine)
 - Mismatching (low beam loading)
- Cryogenic and SRF
 - Turn down capability (general)
 - Cryogenic efficiency (general)
 - Static loss (low duty)
 - Dynamic loss (high duty)

Japan Proton Accelerator Research Complex (J-PARC) Joint Project between KEK and JAEA

Proton Linac:

- Major Parameters
- Accelerated particles: H- (negative hydrogen)
- Energy: 400 MeV, SDTLs and ACS
- Peak current: 40 mA (~ 50 mA for 1MW at 3GeV)
- Repetition: 25 Hz (additional 25 Hz for ADS application)
- Pulse width: 0.5 ms (beam pulse), 0.65 ms (for RF pulse)

Synchrotron Rings (RCS and MR)

Features

- □ Magnetic alloy loaded cavity:
- □ High field gradient > 20kV/m
- Multi-harmonic forward beam-loading compensation
- MR: Slow and fast extractions for nuclear and particle physics experiments

3GeV Rapid cycling (RCS)	synchrotron	Main ring synchrotron (MR)			
Circumference	348.3 m	Circumference	1567.5 m		
Injection energy	400 MeV	Injection energy	3 GeV		
Extraction energy	3 GeV	Extraction energy	30 [50] GeV		
Repetition rate	25 Hz	Repetition rate	¹ /2.48s [¹ /3.64s]		
Output beam power	1 MW	Output beam power	0.75 MW		
Harmonic number	2	Harmonic number	9		
Accel. peak voltage	420 kV	Accel. peak voltage	280 kV		

🛠 Fermilab

Operation cycle:

🛟 Fermilab

The RF power consumption breakdown for the J-PARC facility.

Linac and RCS: Power consumption: 32.6 MW; beam power: 1 MW Efficiency ~3%

A number of improvements are in process of implementation:

- New power supplies with capacitive energy storage for the main magnets are under development. The power variation at the electrical system keeps its present value even after the upgrade.
- High gradient RF cavities loaded with high performance magnetic alloy (FT-3L) cores started to be installed. The total loss with these cavities is half of that with existing cavities.

Power consumption breakdown in the J-PARC linac

35 5/19/2017 V.Yakovlev | IPAC 2017

Power consumption breakdown in the J-PARC RCS

36 5/19/2017 V.Yakovlev | IPAC 2017

Power consumption breakdown in the J-PARC MR

37 5/19/2017 V.Yakovlev | IPAC 2017

	PSI cyclotron	SNS linac	J-PARC linac and RCS
Beam energy	0.59 GeV	1 GeV	3 GeV
Beam Power	1.4 MW	1.4 MW	1 MW
Power consumption	4.5 (RF) in total 10 MW	16.3 MW	32.6 MW
Fraction of grid power converted to beam power	~18-19%	~9%	~3%

	PSI Cyclotron	SNS RT part	SNS SC part	JPARC linac	JPARC RCS	JPARC MR
Beam energy	72-590 MeV	186 MeV	186-1000 MeV	400 MeV	0.4-3 GeV	3-30 GeV
Beam power	1.24 MW	0.26 MW	1.4 MW	67 kW [0.133MW]	0.5 MW [1MW]	0.47 MW [0.75MW]
Total RF consumption from the plug	4.5 MW	4.8 MW	5.9 MW	3.6MW	7 MW	5.6 MW
Losses in the RF cavities	1.4 MW	1.2 MW	~ 0 MW	0.70MW (inc. WG loss+Pr)	1.6 MW	0.7 MW
Losses in the RF sources	1.56 MW	1.8 MW	1.7 MW	2.4MW	4.4 MW	3.6 MW
Losses in the HV sources	0.3 MW	0.2 MW	0.3 MW	0.4MW	7*15% =1 MW	5.6*15% =0.8 MW
Total Power consumption for magnets	2.6 MW	0.05 MW	0.15 MW	0.4MW (inc. cable loss)	9.6 MW	10.4 MW
Losses in the power sources	0.1	~ 0 MW	~ 0 MW	0.1MW	9.6*10% ~1MW	=10.4*10% =1 MW
Cooling (water and air)	0.4 MW	0.9 MW	0.4 MW	2.6MW	0.9MW	0.5 MW
Refrigeration	~0 MW	N/A	3.1 MW	N/A	N/A	N/A
						SE Fermilab

Summary

- Further development of existing types of accelerators and related technology in order to reach higher efficiency:
 - Cyclotrons;
 - SRF linacs;
 - RSCs

Related technology:

- SC (including HTS) and permanent magnets;
- SRF and RT cavities with low losses (especially high Q₀ and resonance control for SRF);
- Capacity energy storage for synchrotron magnets.
- New or alternative ideas and approaches should be developed for both new and explored basic accelerator parameters
 - FFAG;
 - Other new ideas.
- RF is an important "efficiency driver" for all the considered accelerators. New high efficiency RF sources and operation techniques should be developed:
 - high-efficiency klystrons,
 - magnetrons.

