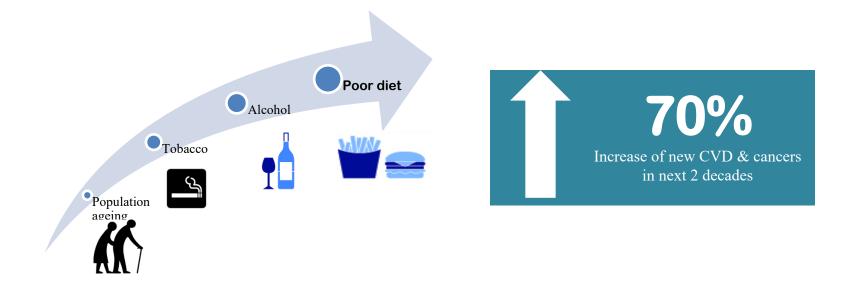
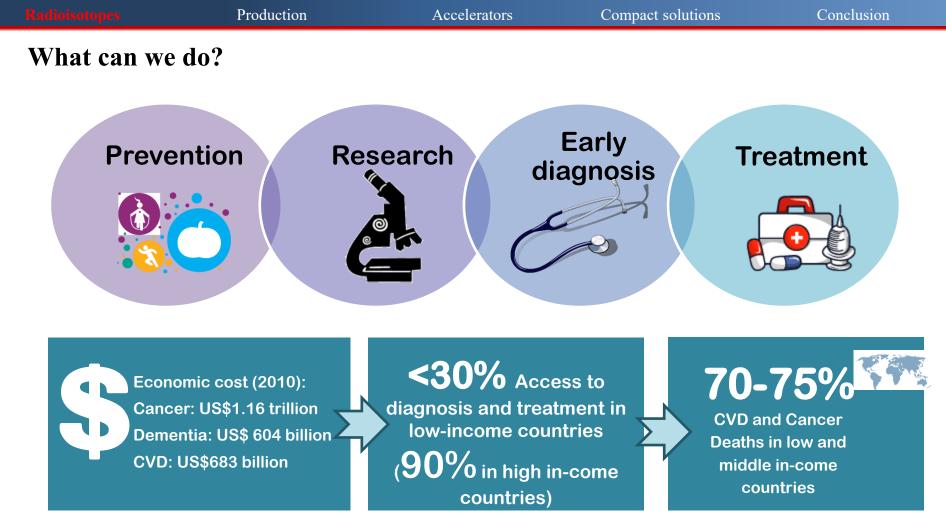

COMPACT AND EFFICIENT ACCELERATORS FOR RADIOISOTOPE PRODUCTION


Concepción Oliver CIEMAT, Madrid, Spain

concepcion.oliver@ciemat.es



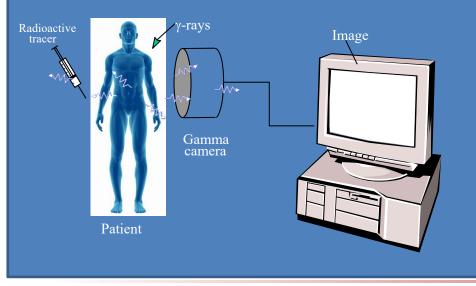
IPAC'17 Conference, Copenhagen 19th May 2017

World Health Organization, http://www.who.int

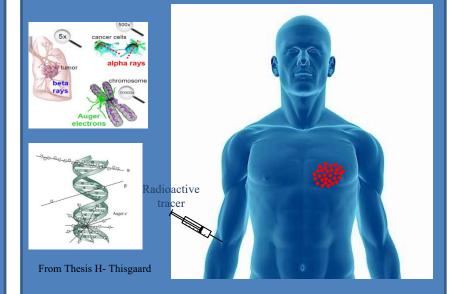
World Health Organization, http://www.who.int

Radioisotopes in Nuclear medicine Radiopharmaceutical

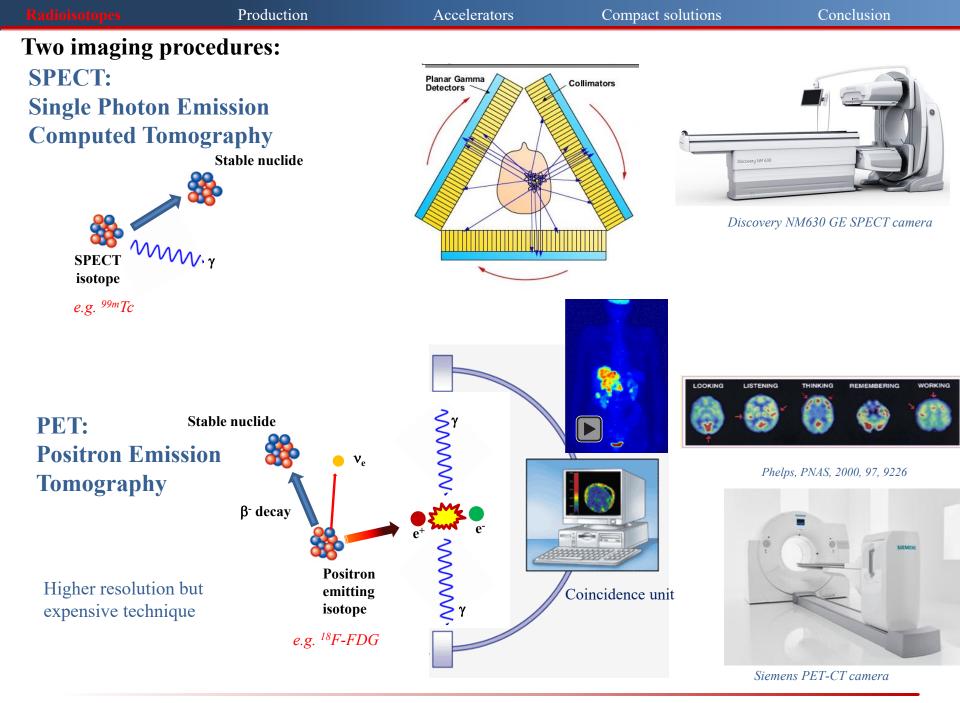
Radiopharmacy


radiopharmaceutical

Localized in some organs or tumors


Imaging

- Gamma radiation (Energy 100-300 keV)
- It provides physiological information
- Useful tool for the diagnosis, treatment planning and follow-up of different diseases.
- Short-life process
- Minimum dose to patient



Therapy

• High ionizing particles: alpha, beta, Auger electrons •High dose

IPAC'17 Conference

Radioisotopes

Production

Accelerators

Production

- Artificially produced by research reactors or accelerators
- Sometimes the parent isotope is produced and by the generator concept, the daughter is extracted with an efficient separation technique (e.g. ⁹⁹Mo/^{99m}Tc)


Research reactors

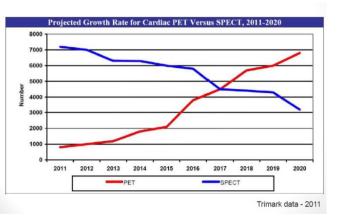
- n-fission or n-capture of HEU targets
 Neutron-rich radioisotopes (^{99m}Tc, ¹³¹I, ¹⁶⁶Ho, ¹⁷⁷Lu)
- High production yield but low specific activity
- Non-proliferation issues: from HEU to LEU targets

Accelerators

- Target irradiation by accelerated particles in accelerators
- Proton-rich radioisotopes (¹⁸F, ²⁰¹Tl, ¹²³I, ⁶⁷Ga, ...)
- High specific activity products but low production yield
- Smaller amount of radioactive waste
- Less capital, operating and decommissioning costs
- Easier access than to reactors

Current issues on isotope supply market

ng	SPECT		⁶⁷ Ga, ^{81m} Kr, ^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³³ Xe, ²⁰¹ Tl, ¹³¹ I, ¹⁷⁷ Lu
Imaging		Short-life	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁶⁸ Ga, ⁸² Rb
In	PET	Long-lived	⁴⁴ Sc, ⁶⁴ Cu, ⁷⁶ Br, ⁸⁶ Y, ⁸⁹ Zr, ¹²⁴ I
py		Beta	³² P, ⁸⁹ Sr, ⁹⁰ Y, ¹³¹ I, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu, ¹⁶⁹ Er, ¹⁸⁶ Re, 188Re
Therapy		Alpha	²¹² Pb, ²¹³ Bi, ²¹¹ At, ²²⁴ Ra, ²²⁵ Ac, ^{227Th} , ²³⁰ U
Th		Auger	⁵¹ Cr, ⁷⁵ Sr, ⁷⁷ Sr, ¹²⁵ I



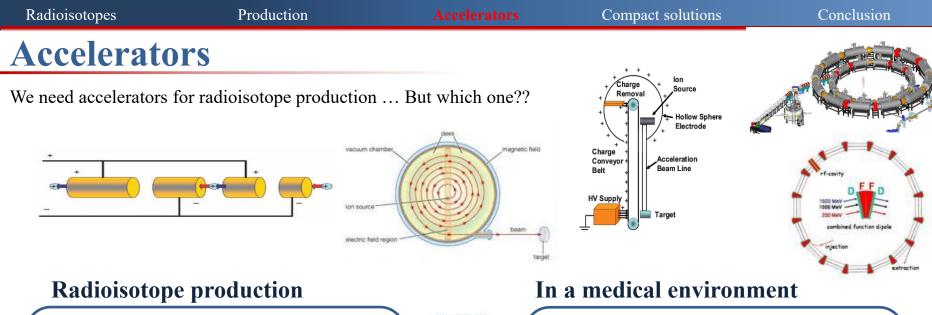
Current issues on isotope supply market

ng	SPECT		⁶⁷ Ga, ^{81m} Kr, ^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³³ Xe, ²⁰¹ Tl, ¹³¹ I, ¹⁷⁷ Lu
Imaging		Short-life	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁶⁸ Ga, ⁸² Rb
In	PET	Long-lived	⁴⁴ Sc, ⁶⁴ Cu, ⁷⁶ Br, ⁸⁶ Y, ⁸⁹ Zr, ¹²⁴ I
py		Beta	³² P, ⁸⁹ Sr, ⁹⁰ Y, ¹³¹ I, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu, ¹⁶⁹ Er, ¹⁸⁶ Re, 188Re
Therapy		Alpha	²¹² Pb, ²¹³ Bi, ²¹¹ At, ²²⁴ Ra, ²²⁵ Ac, ^{227Th} , ²³⁰ U
Th		Auger	⁵¹ Cr, ⁷⁵ Sr, ⁷⁷ Sr, ¹²⁵ I

Last decade crisis in reactor-production

Demand for very short half-life PET isotopes

Current issues on isotope supply market


ng	SPECT		⁶⁷ Ga, ^{81m} Kr, ^{99m} Tc, ¹¹¹ In, ¹²³ I, ¹³³ Xe, ²⁰¹ Tl, ¹³¹ I, ¹⁷⁷ Lu
Imaging		Short-life	¹¹ C, ¹³ N, ¹⁵ O, ¹⁸ F, ⁶⁸ Ga, ⁸² Rb
In	PET	Long-lived	⁴⁴ Sc, ⁶⁴ Cu, ⁷⁶ Br, ⁸⁶ Y, ⁸⁹ Zr, ¹²⁴ I
py		Beta	³² P, ⁸⁹ Sr, ⁹⁰ Y, ¹³¹ I, ¹⁵³ Sm, ¹⁶⁶ Ho, ¹⁷⁷ Lu, ¹⁶⁹ Er, ¹⁸⁶ Re, 188Re
Therapy		Alpha	²¹² Pb, ²¹³ Bi, ²¹¹ At, ²²⁴ Ra, ²²⁵ Ac, ^{227Th} , ²³⁰ U
Th		Auger	⁵¹ Cr, ⁷⁵ Sr, ⁷⁷ Sr, ¹²⁵ I

Last decade crisis in reactor-production

Demand for very short half-life PET isotopes

Need of therapeutic isotope availability

Accelerators

Production route

- Direct production with ions (p,d) : cyclotrons, linacs, DC, FFAG, ...
- γ-induced reactions (electron machines)
- n- induced reactions (CANS, spallation sources, ...)
- particle-induced U fission

Goal:

- •High specific activity \rightarrow ~E choice
- •Maximum production yield \rightarrow linear with I

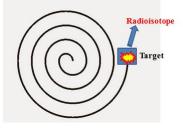
Localized production:

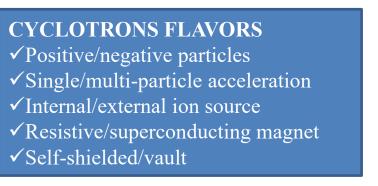
- Compact machines (footprint, weight, shielding, few infrastructure needs)
- Low acquisition and operation cost
- High reliability operation

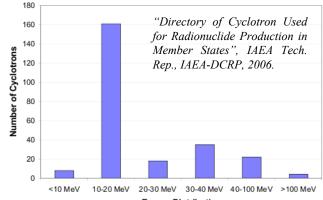
On-site production at hospitals:

 Automatic operation, maintenancefree, low radiation to personnel

- Development on compact, low cost accelerator technology but also
- Targetry development
- Target processing to get a radiopharmaceutical fulfilling standard requirements
- Target recycling for a cost-effective production


Radioisotopes	Production	Accelerators	Compact solutions	Conclusion
Review of	compact acc	elerators		
	OTRONS			
ION L	INACS			
	FRON LINACS			
	FROSTATIC MA	CHINES		
Other	proposals: FFAG,	LASER, CANS,	•••	
C				




Just an overview of some representative examples (based on a personal selection)

Cyclotrons

- □ Standard solution for radioisotope production
- □ Increasing of number of cyclotrons in the last decades
- $\hfill\square$ Key properties: compactness, low cost and commercially available

Enerav Distribution

Low Energy	Medium Energy	High energy
cyclotrons	cyclotrons	cyclotrons
Energies < 15 MeV Short-lived PET isotope production: ¹⁸ F, ¹¹ C, ¹³ N, ¹⁵ O On-site production (hospital)	Energies 15-30 MeV SPECT isotopes: ^{99m} Tc, ¹²³⁻¹²⁴ I, ¹¹¹ In, ²⁰¹ Tl, ¹⁰³ Pd Hospital/local distribution	Energies >30 MeV ⁶⁷ Cu, ⁸² Sr, ²¹¹ At Research lab/industry

Radioisotopes	Production	Accelerators	Compact solutions	Conclusion
I ow operation	valotrong			

Low energy cyclotrons

- On-site production (cyclotron in hospital)
- Very compact and low cost solution
- Integrated product:
 - accelerator+ targetry+radiochemistry
- Reliability, user-friendly, flexibility, minimum personnel dose

Radioisotopes

Production

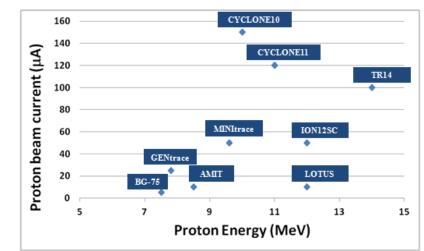
Accelerators

Compact solutions

Conclusion

Low energy cyclotrons

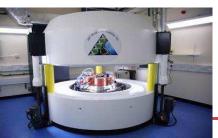
GENtrace

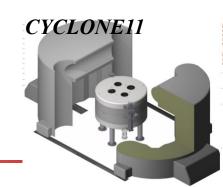


LOTUS

Cyclotron	E _p (MeV)	Ι _p (μΑ)	Peak B (T)	Weight (Tons)			
LOW ENERGY							
GENtrace, GE	7.8	-	2.2	6.7			
MINItrace, GE	9.6	>50	2.2	9.1			
Eclipse, Siemens	11	>120	1.9	11			
Cyclone10, IBA	10	>150	1.9	12			
Cyclone11, IBA	11	120	1.9	13			
TR14, ACSI	14	>100	2.1	23			
BG-75, ABT	7.5	5	1.8	3.2			
AMIT, CIEMAT	8.5	>10	4	3			
ION12SC, Ionetix	12	~10	4.5	2			
LOTUS, SigmaPhi-PMB- CEA	12	50	2.3	-			

MINItrace




ECLIPSE

C. Oliver

Radioisotopes	Production	Accel	lerators		Comp	act solutions	Conclusion
Medium energy c	yclotrons						
• Energies 15-30 MeV							
• Relative high current (2	>300µA)						
• Versatile radionuclide	production: ^{99m} Tc, ¹²³⁻	¹²⁴ I, ¹¹¹ In, ²⁰	¹ Tl, ⁶⁸ C	a, ¹⁰³ Pd	L		
• Larger, heavier, expense	sive machines (w.r.t. P	'ET cyclotr	ons)				
• Local production facili	ty (hospital/industry)						
• Main alternative for ⁹⁹	ⁿ Tc reactor-production	n					
	Cyclotron	E _p (MeV)	Ι _p (μΑ)	Peak B (T)	Weight (Tons)		
PETtrace		MEDIUM E			(10113)		
	BEST15, BEST	15	400	-	14 (magnet)	T _R 3	0
	PETrace ,GE	16.5	>100	1.9	22		

Cyclotion	Lp	₽p	геак D	weight				
	(MeV)	(µA)	(T)	(Tons)				
MEDIUM ENERGY								
BEST15, BEST	15	400	-	14 (magnet)				
PETrace ,GE	16.5	>100	1.9	22				
Cyclone18 IBA	18	150	1.9	25				
KIUBE, IBA	18	<300	-	18				
TR19, ACSI	19	>300	2.1	22				
TR24, ACSI	24	>300	2.1	84				
BEST25, BEST	25	400	-	50 (magnet)				
Cyclone30,IBA	30	<1500	1.7	50				
TR30, ACSI	30	>1000	1.9	56				

IPAC'17 Conterence

C. Oliver

Radioisotopes	Production	Accel	lerators		Comp	act solutions	Conclusion
Medium energy	y cyclotrons						
• Energies 15-30 MeV	V						
• Relative high currer	nt (>300µA)						
• Versatile radionucli	de production: ^{99m} Tc, ¹²³	⁻¹²⁴ I, ¹¹¹ In, ²⁰	¹ Tl, ⁶⁸ G	a, ¹⁰³ Pd	l		
• Larger, heavier, exp	ensive machines (w.r.t. I	PET cyclotr	ons)				
• Local production fa	cility (hospital/industry))					
• Main alternative for	· ^{99m} Tc reactor-productio	n					
	-						
	Cyclotron	Ep	Ip	Peak B	Weight		
PETtrace		(MeV)	(µA)	(T)	(Tons)	513	
1 Littitee		MEDIUM E	NERGY				20
	BEST15, BEST	15	400	-	14 (magnet)	TR	30
	PETrace,GE	16.5	>100	1.9	22		

18

18

19

24

25

150

<300

>300

>300

400

1.9

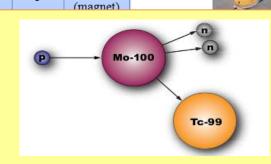
-

2.1

2.1

Most mature alternative to ^{99m}Tc reactor-production: ¹⁰⁰Mo(p,2n)^{99m}Tc

Cyclone18 IBA


KIUBE, IBA

TR19, ACSI

TR24, ACSI

BEST25, BEST

- 16-24 MeV proton (optimum 20-24 MeV)
- *KIUL* Enriched ¹⁰⁰Mo solid target
 - Many progress in the last years
 - development of suitable targetry
 - radiochemistry of target
 - target recycling
 - product quality fully adequate for clinical use
 - \rightarrow short-term solution for ^{99m}Tc local distribution

- F. Benard et al, J Nucl. Med., 55(6), 1017-1022, 2014
- O. Lebeda et al., Nucl. Med. Biol., vol. 39, p. 1286–1291, 2012

25

18

22

84 50

S. V. Selivanova et al., J. Nucl. Med. Vol. 56, p. 1600-1608, 2015

Radioisotopes	Production	Accelerators	Compact solutions	Conclusion
High energy	cyclotrons			

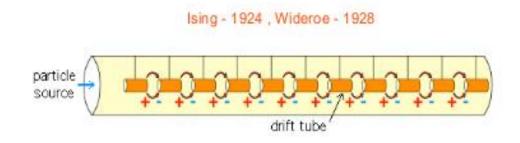
- High current production (~1 mA)
- Production: ⁸²Sr, ⁶⁸Ge, ⁶⁷Cu, ²¹¹At, ⁴⁷Sc, ⁵²Fe, ⁵⁵Co and ⁷⁶Br, some therapeutic radionuclides
- Centralised production facility combined with a high potential for research
- Multi-particle acceleration
- Multiple beam lines
- Solid target capabilities

Cyclotron	E _p (MeV)	Ι _p (μΑ)	Peak B (T)	Weight (Tons)		
MEDIUM ENERGY						
BEST35, BEST	35	1000	-	55 (magnet)		
Cyclone70, IBA	70	<750	1.6	145		
BEST70, BEST	70	700	1.6	195 (magnet)		

Still compact?

BEST35

BEST70



CYCLONE70

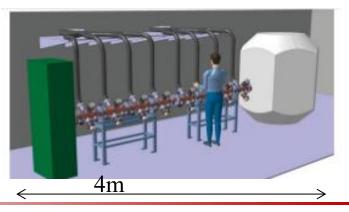
Radioisotopes	Production	Accelerators	Compact solutions	Conclusion
Why using	linacs for ra	adioisotope	production?	

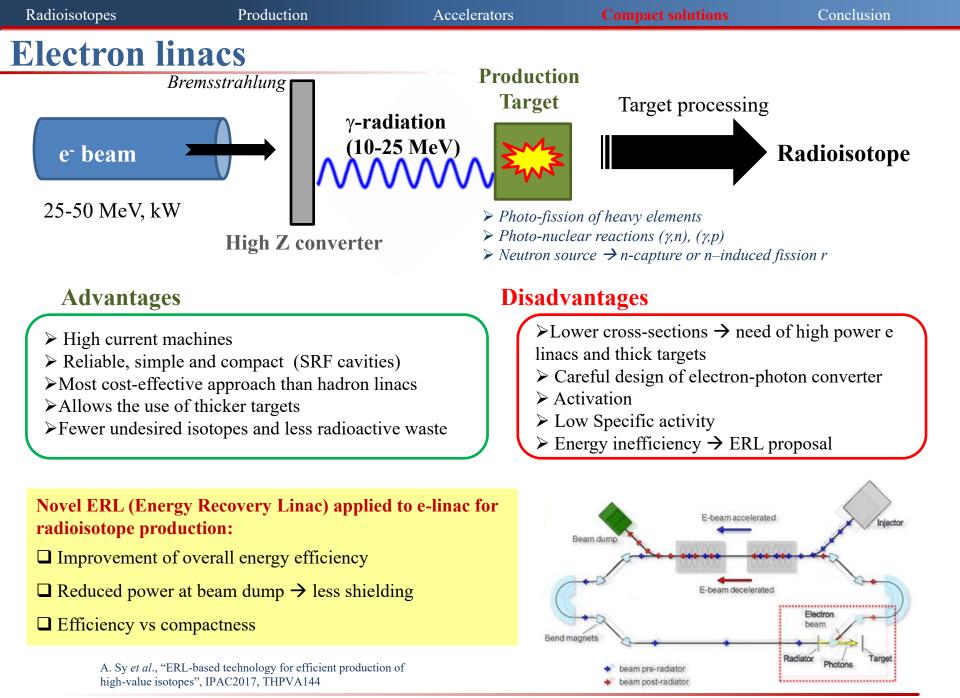
- □ Strong focusing allowing high current beams
- \Box Limited radiation levels \rightarrow reduced shielding
- \Box High Frequency & Superconducting RF developments \rightarrow compact, high power efficiency
- **□** Ease of operation and limited maintenance
- Use of multipole target stations @ different energies

Ion (p,d, alpha) linacsElectron linacs

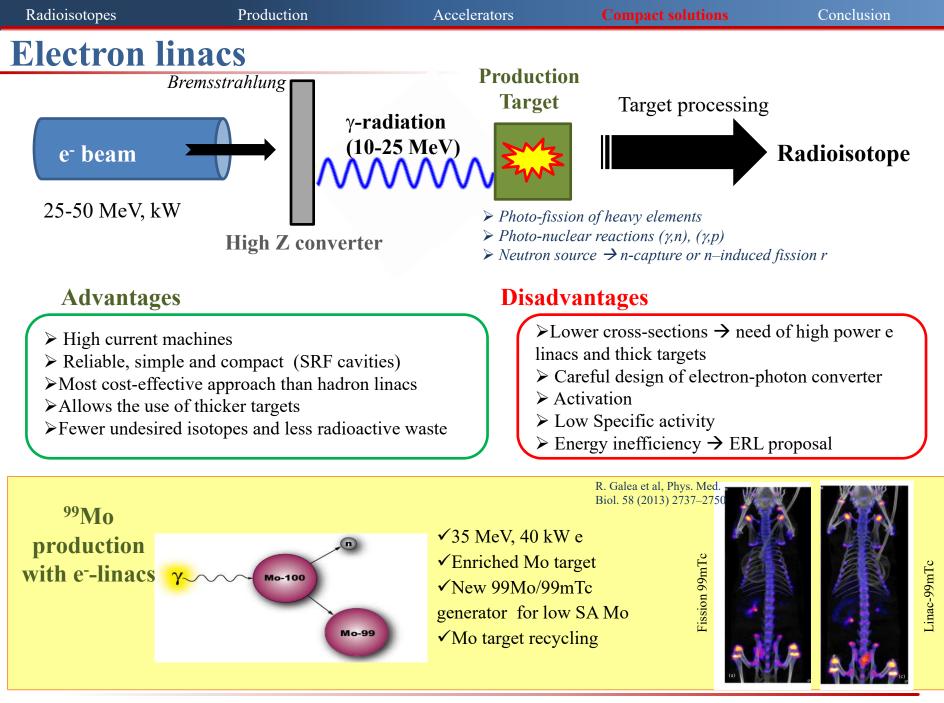
RadioisotopesProductionAcceleratorsConclusionConclusion of conclusion of conclusio

HF-RFQ, by CERN


- ≻750 MHz HF –RFQ resulting in short, low cost design
- > Optimized beam dynamics simulations \rightarrow limited radiation
- Designed to minimize power consumption
- Reliable, limited maintenance
- ▶ PET: 2 RFQ modules, 10 MeV, 20 µA aveg. I, 4% duty cycle
- ➤ SPECT: 2 RFQ +DTL, 18 MeV, 1mA aveg. I, 10% duty cycle

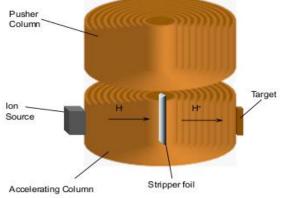


M. Vretenar et al., in Proc. LINAC2016, TH1A06.


PET production:

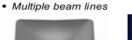
Cern developing 'mini LHC' particle accelerator to treat cancer

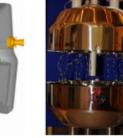
IPAC'17 Conference



IPAC'17 Conference

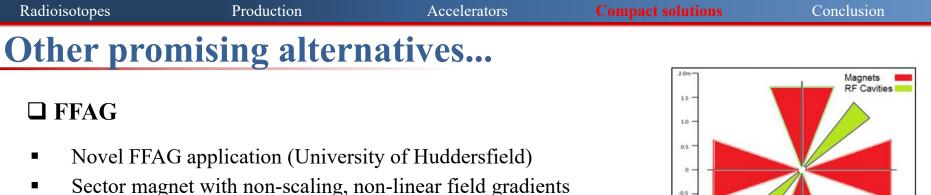
Radioisotopes	Production	Accelerators	Compact solutions	Conclusion
Electrosta	tic machines			
ONIAC (Sieme	ens)			
Novel, compact	DC electrostatic acceler	ator for radionuclide	Pusher Column	Maria
production				


□ Features

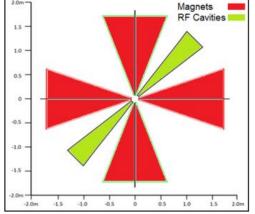

- -Variable energy up to 10 MeV
- -Currents up to few mA
- -Compact design footprint 2x2 m²
- Multiple beam lines
- High energy efficiency
- Low machine radio-activation
- Robustness
- Low total cost
- $\hfill\square$ ONIAC short-lived PET production

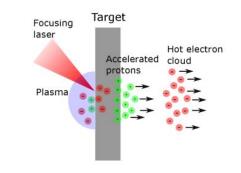
Svetlana Gossmann-Levchuk/ Corporate Technologies

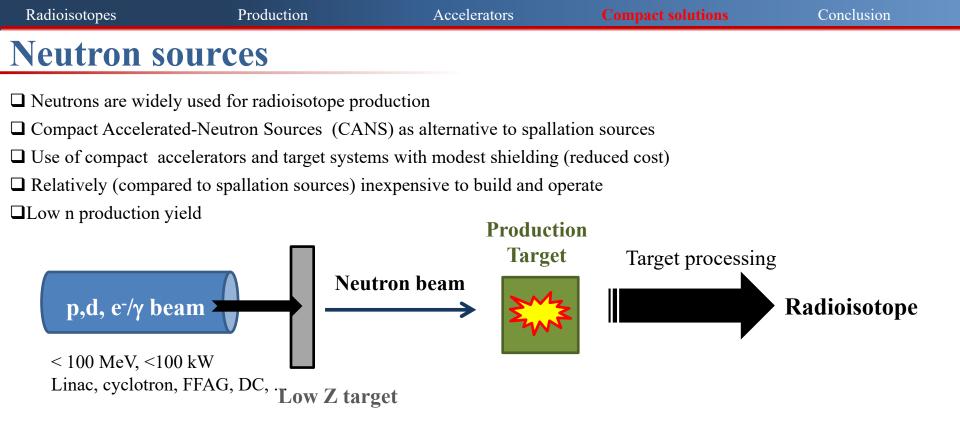
Spatial foot print of < 2 m²



Copyright © All rights res


P. Beasley et al., IPAC 2011, TUPS079


- Isochronism at 0.3% level, CW operation, 20 mA
- 28 MeV for ^{99m}Tc and other new isotopes
- Compact design (maximum magnet radius 1.7 m)
- Thin internal target placed directly in the machine to improve production efficiency and reduce shielding


Using lasers

- Use of high-peak power laser for isotope production based on (γ,n) ad (γ,p) reactions
 - Simulation of ⁹⁹Mo/^{99m}Tc, ²²⁵Ra/²²⁵Ac, ¹⁸⁶Re using high brilliance γ-beam of ELI-NP W. Luo, Appl. Phy. B, p. 122:8, 2016.
- Use of MeV p, produced by PetaWatt laser beam interacting with solid targets, for isotope production based on p direct reactions K. Ledingham et al., J. Phys. D: Apply. Phys. 37, 2004.
- Table-top TW laser proposals M. Seimetz et al., Journal of Instrumentation, vol. 11, 2016.

D. Bruton,., IPAC2016, TUPOY023 D. Bruton et al., IPAC2017, TUPVA133, this conference

Multipurpose facilities:

- iThemba in South Africa (25-200 MeV p separated cyclotron)
- KOMAC in Korea (50 MeV cyclotron),
- KURRI-Linac at Kyoto (30 MeV, 6 kW electron linac).
- GRAND (2 mA deuteron, 40 MeV cyclotron) to produce ¹⁰⁰Mo(n,2n)⁹⁹Mo reaction using **fast (**14 MeV) neutrons (C target)
- SHINE D-T generator in a subcritical hybrid system
- LANSAR®, by ACCSYS company, based on p,d linac with a Be target

http://www.accsys.com/lansar.html

Radioisotopes	Production	Accelerators	Compact solutions	Conclusion

Million \$ question: optimum accelerator for Radioisotope Production?

Availability of accelerators with high performance combined with miniaturized solutions, providing a wide range of accelerator solutions to ensure a reliable radioisotope supply

Cyclotrons are by far the most mature technology for on-demand production

□ Novel compact linacs solutions emerge as an alternative to cyclotrons

□ Electron linacs offer a mid-term solution for 99mTc

Application of "Novel" accelerators to radioisotope production seems promising

□ Remember: not only development on accelerator, but (mainly?) in target, radiochemistry, target recycling

□ Important: analysis of full solution cost to analyze its viability for cost-effective radioisotope production

Radioisotopes	Production	Accelerators	Compact solutions	Conclusion	
Conclusion					

Million \$ question: optimum accelerator for Radioisotope Production?

Availability of accelerators with high performance combined with miniaturized solutions, providing a wide range of accelerator solutions to ensure a reliable radioisotope supply

- Cyclotror
- □ Novel coi

- Thank you !!!
- Electron linacs offer a mid-term solution for 99mTc

Application of "Novel" accelerators to radioisotope production seems promising

- □ Remember: not only development on accelerator, but (mainly?) in target, radiochemistry, target recycling
- □ Important: analysis of full solution cost to analyze its viability for cost-effective radioisotope production

bn