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Abstract
Dielectric Laser Acceleration (DLA) achieves gradients

of more than 1GeV/m, which are among the highest in non-
plasma accelerators. The long-term goal of the ACHIP col-
laboration [1] is to provide relativistic (>1 MeV) electrons
by means of a laser driven microchip accelerator. Examples
of "slightly resonant" dielectric structures showing gradients
in the range of 70% of the incident laser field (1 GV/m)
for electrons with beta=0.32 and 200% for beta=0.91 are
presented. We demonstrate the bunching and acceleration
of low energy electrons in dedicated ballistic buncher and
velocity matched grating structures. However, the design
gradient of 500 MeV/m leads to rapid defocusing. Therefore
we present a scheme to bunch the beam in stages, which
does not only reduce the energy spread, but also the trans-
verse defocusing. The designs are made with a dedicated
homemade 6D particle tracking code.

INTRODUCTION
Beyond the acceleration of relativistic electrons [2], re-

cent experiments also addressed DLA for subrelativistic
electrons [3, 4]. Since only the evanescent near field which
decays as exp(−ωy/(βγc)) contributes to acceleration, both
the gradients and the apertures are smaller in subrelativistic
structures. In Fig. 1 we present a novel DLA structure that

Figure 1: Bragg mirror cavity structure (Silicon εr = 11.63,
length λg = 620nm) for n=0 (top) and 3D simulation for
n=3 and height 3µm (bottom). The black arrow indicates
the electron trajectory at which the structure is periodic.

contains both features of a side-coupled grating accelera-
tor and a Bragg-waveguide accelerator. This structure is
"slightly resonant" and thus presents a compromise between
filling time and acceleration gradient. The structure con-
stant is the ratio between the gradient and the incident laser
field and can be conveniently expressed by the normalized
resonant spatial Fourier coefficient em as

SC =
maxϕ{∆W}

eEz0λg
= |em |, (1)
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where Ez0 is the incident (z-polarized) laser field and ϕ =
2πs/λg is the phase of a particle at a distance s behind a
design particle. The resonant integer m fulfills the Wideroe
condition λg = mβλ0, where λg is the structure period. Usu-
ally the fundamental |e1 | is the largest coefficient so we will
restrict ourselves to m = 1 in the following. The thickness
of the Bragg reflection layers is d = (1/4 + n/2)λ0/

√
εr ,

where the integer n can be chosen according to practical
requirements of the fabrication aspect ratio and the required
height. The structure constant can be determined using time
domain simulations (here: CST MWS [5]), evaluated at the
center frequency of the broadband spectrum. Alternatively,
we developed a dedicated finite element (FEM) code in the
frequency domain [6], which was also used to optimize the
β = 0.91 version of the Bragg structure.

ACCELERATOR DESIGN
We propose a structure that comprises ballistic bunching

followed by velocity matched acceleration, see Fig. 2. For
simplicity we assume that the structure is driven from both
lateral sides with a cw laser. In the choice of initial electron
beam parameters we follow [3], i.e. β = 0.3165,σE = 10 eV
and the transverse emittance is disregarded at first. The
parameters of the structure are summarized in Tab. 1 and
shall be discussed in detail in the following.

Figure 2: Chirped accelerator structure with 100 periods
(top), longitudinal electric field amplitude (center), and
phase (bottom) along the chirp.

Velocity Bunching
Velocity bunching is well known for both ion and elec-

tron beams. The idea is to modulate a coasting beam such
that it has a sinusoidal correlated energy spread pattern. A
following drift section for subrelativistic beams (or a dis-
persive chicane for relativistic beams) will transform the
energy modulation into a phase modulation of ∆ϕ = π/2,
at which the longitudinal focus is reached. This happens in
T = λg/(4∆βc) and thus the length needs to be

Ldrift,int = βcT =
λg

4
β

∆β
=
β2γ3

4
mec2

∆Wkin
λg, (2)

where the energy-velocity differential is dβ = dγ/(βγ3).
The energy modulation can be realized with more than one
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Table 1: Accelerator Parameters

Laser strength 1 GV/m
Aperture 200 nm
Buncher periods 3
Buncher period length λg0 620 nm
∆Wcorr (incl. fringe) ≈ 1.6 keV
LDrift (total) 5.06 µm
LDrift,int 8 λg0
LDrift,frac (incl. ph. corr.) 0.16 λg0
Accelerator |e1 | 0.73 (initial)
Linear chirp ∆z 3.2 nm/cell
Chirp decrement ∆∆z 16 pm/cell
Synchronous phase ϕs 47°
Acceptance ∆Emax 2 keV
Synchrotron frequency fs 4.53 THz (initial)
Gradient 500MeV/m (initial)

grating cell, since the drift between the cells is negligible,
see Fig. 3. The particles pile up at the zero crossing of the
modulator phase and can be injected exactly at the designed
synchronous phase ϕs by a fractional period drift

Lfrac = λg0
π/2 − ϕs + ∆ϕB

2π
, (3)

where ∆ϕB is a phase correction due to the buncher fringe
fields, see Fig. 2 bottom. The total length of the drift is
Ldrift = λg0[Ldrift,int/λg0] + Lfrac, where the square brackets
denote integer rounding.

Figure 3: Buncher longitudinal phase space.

Energy Spread Acceptance
The energy spread acceptance and the initial synchrotron

frequency are determined similarly to ordinary RF accel-
erators. The tracking equations can be approximated by
differential equations cast in the form of Hamilton’s equa-
tions, which can be integrated in the conjugate variables
τ = ϕ/ω0 and ∆W = γmec2δ to find the Hamiltonian as

H(ϕ, δ) =
mec2

2β2γ
δ2 − eEz0 |e1 |

λg

2π
(sin ϕ − ϕ cos ϕs). (4)

The separatrix is found by the value of H at the saddle point
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Figure 4: Energy spread acceptance (red) and energy gain
per quarter synchrotron period (blue) as function of the
synchronous phase ϕs

ϕsaddle = −ϕs as

δsep(ϕ) = ±

√
2β2γ

mec2 [H(−ϕs, 0) − H(ϕ, 0)]. (5)

The bucket height gives the energy spread acceptance
∆Emax = γmec2δsep(ϕs) as depicted in Fig. 4. Moreover,
from the Hamiltonian in Eq. 4 the second order differential
equation

∂2ϕ

∂t2 =
2π
γ3

eEz0 |e1 |

meλg
[cos(ϕ) − cos(ϕs)] (6)

can be derived. Assuming ϕ = ϕs +∆ϕ the small amplitude
synchrotron frequency is found as

fs =
ωs

2π
=

√
eEz0 |e1 |

2πγ3meλg
sin(ϕs). (7)

Chirped Grating
In order to trap the particles with energy spread and phase

spread in the bucket and accelerate, the phase of the acceler-
ating Fourier coefficient needs to be as constant as possible
along the chirped grating. This is achieved in the same man-
ner as tuning RF cavities, namely by adjusting a geometry
parameter that is still free. Here, the tooth width t is taken
as

t = t(0)
(
λg/λ

(0)
g − 1
ξ

+ 1

)
, (8)

with t(0) =200 nm and optimal phase flatness for ξ ≈ 2.7,
see Fig. 5. Once phase stability is established, the design of

Figure 5: Establishing (almost) constant phase (4 deg jitter)
by adjusting the tooth width.
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Injection velocity
��

Determination of next period length
��

Simulation of electric fields and
calculation of Fourier coefficients

��

Calculation of the energy gain
at synchronous phase

��

Calculation of the velocity
after passing the period

oo

��
extraction velocity

Figure 6: Iteration for the design of a chirped grating.

the entire structure can proceed according to the scheme in
Fig. 6. The linear chirp ∆z(n) = λ(n+1)

g − λ
(n)
g is given by

∆z(n) = λ0∆β =
λ0∆γ

γ3β
=

[
λ0

βγ2
∆W(ϕs)

γmec2

] (n)
, (9)

where ∆W (n) = mec2∆γ(n) is the energy gain in the n-th
grating period. The decreasing amplitude of e1 is taken into
account by writing ∆z(n) = ∆z(1) − (n − 1)∆∆z. Note that
∆z and ∆∆z are averages and are thus not requirements for
the fabrication precision. The slight change in the phase of
the Fourier coefficients (Fig. 5) leads to an identical change
of the synchronous phase, causing a small additional energy
spread increase. The acceleration ramp obtained by a CST
tracking simulation is shown in Fig. 7, where 72 particles
represent a uniform distribution. The synchrotron motion is
clearly visible, its initial period agrees roughly with λinit

s =

21 µm calculated by Eq. 7.

Figure 7: Energy gain along the structure for 72 particles
launched at t = 0 sweeping over the laser phase in steps of
5 degrees. The fraction of trapped particles is 81%.

OPTIMIZED BUNCHING
When taking into account finite transverse emittance, the

acceleration defocusing plays a decisive role. Already in the
modulator the electrons are strongly focused or defocused,

depending on their arrival wrt. the laser phase. Adding a de-
modulator (same structure as the modulator but half a period
displaced) at the end of the drift section will decrease the
energy spread and the initially defocused particles will be
focused and vice versa, see Fig. 8. The headline of the trans-
verse plots gives the percentage of particles that survived
the aperture.

Figure 8: Longitudinal phase space and grating setup (top)
and transverse phase space (y′ = γβy), where the color
indicates the particle phase ϕ (bottom).

CONCLUSION AND OUTLOOK
We introduced a novel "slightly resonant" DLA structure

that combines Bragg waveguides and symmetric grating
structures. We showed that the longitudinal dynamics in
DLAs for low energy can be well controlled, in a similar
manner as for conventional accelerators. The acceleration
defocusing due to the high gradient can however not be
compensated by solenoid or quadrupole magnets. Thus in
future dedicated laser driven focusing schemes as outlined
in the last section and approaches to the transverse dynamics
have to be developed.
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