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Abstract

Radiofrequency (RF) cavities for use in accelerators, from

RF sources to accelerating and transverse cavities, often

exhibit m-fold azimuthal symmetry. For cases where m>0,

commercially available finite element codes used to simulate

the beam-wave interaction typically require a full 3D simu-

lation. We have derived a finite element formulation which

accounts for the known azimuthal dependence of the electro-

magnetic fields, allowing us to solve for these problems on

a 2D mesh and reducing simulation times significantly. The

theory, including the construction of the local finite element

matrices and the selection of appropriate basis functions,

will be presented in addition to numerical results.

INTRODUCTION AND MOTIVATION

The ability to rapidly simulate the fields and beam-wave

interactions in increasingly more complicated RF structures

has enabled significant advances in the field of particle ac-

celerator engineering. As we move to higher frequency

structures which must be highly overmoded to accommo-

date reasonable beam current, simulation codes are being

tested to their limits in terms of memory and computation

time. For structures such as these, simulations can take on

the order of hours to days, rendering the design and optimiza-

tion of such systems challenging. Fortunately, in accelerator

physics, most RF fields of interest have some degree of az-

imuthal symmetry of the form eimθ .

While it is common to find axisymmetric solvers (m = 0),

we are interested in developing a finite element formulation

that would allow us to account for the known azimuthal de-

pendence beforehand, for arbitrary m, reducing the problem

to one that can be solved on a 2D mesh. Herein we present

this formulation, first for the electrostatic case and then in the

context of an eigenmode solver. We present some details of

our computational implementation and conclude with plans

for future work.

ELECTROSTATIC CASE

We start in Eq.(1) with the variational formulation of

Poisson’s equation. This is a special case of the general

Lagrangian formulation for the electromagnetic potentials

(steady state, �A = 0).

L =

∫
ε

2
|∇φ|2 + ρφ dv (1)

We can substitute φ = φ(r, z)eimθ and evaluate this inte-

gral over θ = (0, 2π). The resulting expression is given by
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Eq. (2).

L =

∫
ε

2
[m2 φ(r, z)

2

r
+ r(
∂φ(r, z)

∂z
)2

+ r(
∂φ(r, z)

∂r
)2] + rρ(r, z)φ(r, z) drdz (2)

As the next step in the finite element method, we discretize

our solution space and expand the potential into a linear

combination of basis functions which span this discretized

space: φ(r, z) =
∑

i Φiξi(r, z) where ξi(r, z) are the well

defined basis functions and Φi are the unknown coefficients

that we will solve for. In our implementation we used a

triangular mesh with quadratic basis functions. A natural

choice for the basis functions are thus the 6 nodal basis

functions, ηi(rj, zj) = δi j where (rj, zj) are the six sample

points on the triangle (3 vertices and 3 midpoints).

However, this choice of basis function is not necessarily

the best choice and can lead to very poor convergence of

the solution depending on the value of m. For all m � 0,

Ez = 0 =⇒ ∂zφ = 0 on axis, so a much better choice for

the basis function is ξi(r, z) = rxηi(r, z) for some power, x.

A basis function of this type is essentially made necessary

anyway by the singularity at r = 0 that arises in the integral

in Eq.(2) from the m
r

term.

Having discretized the Lagrangian, we can write it as

the matrix equation in Eq.(3). The variation is then done

by taking ∂Φ = [ ∂

∂Φ1
, ∂

∂Φ2
, ...] such that we can obtain the

approximate solution, Φ by solving Eq.(4).

L = Φ L Φ
T (3)

∂ΦL = L Φ
T
= 0 (4)

Li j = ε

∫
m

2
ξi(r, z)ξj(r, z)

r
+ r

( ∂ξi(r, z)
∂z

∂ξj(r, z)

∂z

+

∂ξi(r, z)

∂r

∂ξj(r, z)

∂r
+ ρ(r, z)

)
dS (5)

Note the integral in Eq.(5) is taken over the surface of each

triangle element. L can be calculated either numerically or

analytically for each element invidividually, creating a local

matrix. These local matrices are added to the global matrix

for all nodes in the mesh and the resulting linear system is

then solved numerically.

Calculating the E field

To obtain the electric field, �E = −∇φ, one could apply

a numerical gradient to the solution vector, Φ. However,

through this process, the order of the solution is then reduced

(for example, we work with second order basis functions, so
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�E calculated this way would then be piecewise linear). To

avoid this, a weak form of �E = −∇φ is used and a second

variation performed, producing �E to the same order as φ.

This step does not add significant overhead in terms of com-

putation time as the matrices associated with this step can

be calculated once, after meshing, and reused for various

problems on the same mesh.

Sample output from our electrostatic solver is shown in

Fig. 1 for a typical DC gun. While this gun is of course

azimuthally symmetric (m = 0), we show the case where

voltages with m = 2 azimuthal symmetry are applied as well

to demonstrate how the potential and fields change.

Figure 1: The electrostatic potential, φ (left) and the electric

field �E (right) for a DC gun, as obtained from our solver. The

m = 0 case is on top and the m = 2 case is on the bottom.

EIGENMODE SOLVER

In a similar manner to the electrostatic solver, our steady

state, source free eigenmode solver uses the Lagrangian

formulation for the electromagnetic potentials except we

now include �A, such that our variational form is given by

Eq.(6). Note this analysis is conducted in the frequency

domain, so φ and �A are complex spectral amplitudes here.

The second term is needed to impose arbitrary boundary

conditions (Y is a dyadic related to the conductance on the

boundary). Without it, only the natural boundary condition

of a magnetic wall is enforced.

L=
ε

2

∫
|∇φ + iω �A|2 − c

2 |∇ × �A|2 dv+

1

iω

∫
(−∇φ − iω �A) · Y (−∇φ∗ + iω �A∗) dS (6)

In implementing the eigenmode solver, we considered

first the case where m = 0. While too lengthy to include

here, when the eimθ dependence is substituted into the La-

grangian, it splits into terms that depend only on Aθ and

terms where Ar, Az and φ are coupled to each other. This

split corresponds to transverse electric (TE) modes when

Ar = Az = φ = 0 and transverse magnetic (TM) modes

when Aθ = 0. While it is possible to solve for the TE modes

first and then derive the TM modes from these, we imple-

mented both as solving for the TM case directly allowed

us to develop a better understanding of the issue of gauge

fixing and spurious modes [1]. This was crucial before we

could move to m > 0. The TE modes do not require any

gauge fixing as the additional degrees of freedom are all set

to zero.

In either case, the Lagrangian could once again be written

in the form of Eq.(3), except now our discretized Lagrangian

matrix operator, L depends also on ω:

L =Mω2
+ Cω2

+K (7)

The resulting variation gives a quadratic generalized eigen-

value problem, however if the Coulomb or Lorenz gauge

are enforced and appropriate basis functions used (see [1]),

it can be reduced to a linear generalized eigenvalue prob-

lem (GEP). Either can be solved numerically, however the

quadratic problem is essentially twice as costly in terms of

computation time and memory. It can also be less numer-

ically stable than the linear GEP, hence the motivation to

work with the latter when possible.

Sample output from our eigenmode solver is shown in Fig.

2 for a 1mm x 1mm pillbox cavity.

Figure 2: Results of the eigenmode solver showing the �E
field for select TM modes of 1mm x 1mm pillbox cavity.

IMPLEMENTATION

The computational implementation of this FEM formu-

lation was done in C/C++. Included in the current imple-

mentation is a user interface through mathematica, a custom

mesher, functions to calculate the local matrices for the

electrostatic solver (m arbitrary) and the eigenmode solver

(m = 0 only), and a function to assemble and solve the

global matrix. The �E and �B field solvers that solve the weak

formulation of the differential equations with respect to the

potentials ( �E = −∇φ − iω �A and �B = ∇ × �A) are in the

process of being implemented. Below we discuss some of

these features in more detail.
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Mathematica Interface

The user interface is currently through Mathematica. The

outer hull geometry can be constructed in Mathematica and

the boundary conditions defined. Through the WSLINK

feature in Mathematica a connection between a C program

and the Mathematica run time can be established such that

function calls and data can be transferred to and from a

Mathematica notebook.

Mesher

A custom mesher is used which maps the user defined

outer hull to a grid over which triangular elements are created

to fill the hull. These triangles are iteratively transformed

via rotations, splitting, and inverting end points of adjacent

triangles until the minimum angle is above a user defined

tolerance. The end result is a fairly uniform mesh with no

triangles having any extreme aspect ratios, necessary for

finite element analysis.

The final mesh is not an optimal mesh in the sense of a

Delaunay triangulation, but it does get close and in most

cases is much faster, requiring usually only 4-5 iterations to

achieve a minimum angle of 20◦, for example. That being

said, the number of iterations will depend heavily on the

initial grid size used. A sample mesh demonstrating a few

iterations is shown in Fig. 3.

Figure 3: The inital mesh vs final mesh after triangle pertur-

bations. The grid size was set exceptionally large to demon-

strate the ability to handle high aspect ratio triangles.

Local Matrix Calculation

The integrals for the local matrices are calculated analyti-

cally in Mathematica for our 2nd order triangular nodal basis

functions. The result is a 4d × 4d matrix with expressions

that are functions of the nodal coordinates, (ri, zi). Here d

is the number of nodes per element (6 in our case) and the

4 comes from the fact that we are solving for φ and three

components of �A. In the electrostatics solver and the TE

mode solver, the matrix size is reduced to a d × d matrix.

Some of the local matrix entries are quite complex, partic-

ularly for m � 0, and can reach up to 60-100 operations per

entry if left in the original output form in Mathematica. We

have thus spent effort devising an optimization algorithm

that reduces the number of operations via substitutions of

commonly encountered terms in the matrix entries. These

terms can be calculated at the beginning and reused, reduc-

ing the total number of operations significantly. The local

matrix entries are then ported to the c code.

Global Matrix Assembly and Solution

After creating an adjacency matrix from the mesh, the

global matrix is assembled by traversing each triangle, cal-

culating the local matrix for that element, and adding the

values to the appropriate entry in the global matrix according

to the adjacency matrix.

The solution is then calculated using the Intel MKL li-

braries. For the linear system in the electrostatic problem,

we use the Paradiso solver. For the eigenmode solver, the

FEAST algorithm is used to solve the generalized eigen-

value problem. The FEAST algorithm computes a subset of

the eigenvalues using a contour integration in the complex

plane [2]. We extended this algorithm to work for quadratic

eigenvalue problems as well, however this is only imple-

mented in Mathematica and not in the c code.

CONCLUSION AND FUTURE WORK

The theoretical formulation and initial groundwork for

a 2D finite element solver for electromagnetic fields with

m-fold azimuthal symmetry has been presented. We have

described the theory and some implementation details for an

electrostatics solver and an m = 0 eigenmode solver based

on this formulation and some sample results presented.

The project is a work in progress and there is much to be

done still. The immediate next step is the implementation

of the m � 0 eigenmode solver. The next step will then be

to add the source terms to the formulation allowing us to

solve driven problems. In conjunction with this work, we are

developing a particle tracking code to be used with this EM

solver, allowing us to iteratively solve for the fields and the

particle trajectories until we converge on the correct solution

for both.

Finally, an in-depth study of the performance of the solver

is planned for the future, including convergence characteris-

tics, timing and memory usage.
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