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Abstract

Conventional electromagnetic finite element solvers typi-

cally solve a weak formulation of the Helmholtz wave equa-

tion. While mathematically this approach is correct, it does

not fully reflect the fundamental physics involved. We offer

an alternative variational formulation which is not derived

from the Helmholtz wave equation but is more fundamen-

tally tied to the physics of the system: a Lagrangian for

the electromagnetic potentials. Solving for the potentials

directly allows for a natural accounting of the beam wave

interaction through the interaction terms ρφ and ®A · ®J. It

could also potentially avoid the issue of deleterious spuri-

ous modes inherent when selecting the Coulomb gauge and

enforcing the subsequent divergence free condition, elimi-

nating the need for vector basis functions. Herein we present

the theory and the resulting formulation including a discus-

sion on gauge fixing. We conclude with some numerical

results demonstrating the potential of this formulation.

INTRODUCTION AND MOTIVATION

The finite element method (FEM) is a numerical method

used to solve boundary value problems of partial differential

equations. It does this by discretizing the solution space and

approximating the partial differential equations by a set of

ordinary differential equations, or in steady state, linear equa-

tions, on each element. This requires a variational or weak

formulation of the problem such that the minimized function

over the discretized space corresponds to the solution to the

original problem.

Electromagnetic solvers typically solve a weak formula-

tion of the Helmholtz wave equation, given by Eq. (1) and

(2) in the source free case. Note that these equations are

written in terms of the ®E and ®B fields, which are decoupled

from each other. In magnetostatics and magnetodynamics, a

magnetic vector or scalar potential is frequently used instead

of solving for ®B directly.

(∇2
+ k

2) ®E = 0 (1)

(∇2
+ k

2) ®B = 0 (2)

An alternative approach we present here is to start with

the Lagrangian for the electromagnetic potentials, φ, ®A. This

variational formulation results in Maxwell’s equations when

varied, naturally lending itself to finite element analysis

(FEA). Furthermore, unlike weak forms derived explicitly

from Maxwell’s equations, the Lagrangian formulation is

derived from and thus reflects the physics on a fundamen-

tal level, from the inherent symmetries to the beam-wave

interaction.

∗ vrielink@stanford.edu

In this paper we will present a Lagrangian for use in elec-

tromagnetic FEA, demonstrating that it encodes Maxwell’s

equations and can account for arbitrary boundary conditions

on the fields. We will then discuss the question of gauge

fixing and spurious modes. We will demonstrate how we

can avoid spurious modes, an issue which plagues numerical

solvers of the Helmholtz equation, without needing to resort

to vector basis functions. Finally, we conclude with a brief

outline of the implementation of this formulation in C++

and plans for future work.

A LAGRANGIAN APPROACH

The classical Lagrangian for the electromagnetic four

potential (separated into the electrostatic potential, φ and

the magnetic vector potential, ®A) is given by Eq. (3). Here

ρ is the charge density and ®J is the current density.

L =

∫ ∫

ǫ

2

(

|∇φ +
∂ ®A

∂t
|2 − c

2 |∇ × ®A|2

)

− ρφ+ ®A · ®J dv dt

(3)

It is worth noting that we could have used a Lagrangian

written in terms of the electromagnetic fields, however work-

ing with the four-potential offers a natural accounting of

beam-wave interactions through the ρφ and ®A · ®J terms.

This Lagrangian can be shown to produce Maxwell’s equa-

tions with magnetic wall boundary conditions when varied.

To account for arbitrary boundary conditions, we add the

term in Eq. (4).

LBC =

∫ ∫

1

iω
(−∇φ−

∂ ®A

∂t
) ·Y · (−∇φ∗−

∂ ®A∗

∂t
)dS dt (4)

When varied with respect to ®A and φ, respectively, the

full Lagrangian then gives Eq. (5) and Eq. (6).

ǫc
2
n̂ × (∇ × ®A) = (∇φ +

∂ ®A

∂t
) · Y (5)

ǫ(∇φ +
∂ ®A

∂t
) · n̂ + ∇ · (

∇φ · Y

iω
+ ®A · Y ) = 0 (6)

Note the boundary conditions are imposed on the fields,

not the potentials. This is clearer when writing Eq. (5) in

terms of the fields, as in Eq. (7). From this we see that Y is

a dyadic representing the conductance on the boundary. It

cannot have any component normal to the boundary surface.

As Y → ∞, a perfect electric wall is enforced, while for

Y = 0, we are back at the magnetic wall boundary condition.

n̂ × ®Bt = − ®Et · Y (7)
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STEADY STATE, SOURCE FREE

EIGENMODE SOLVER

We consider first the simple case of an eigenmode solver

to solve for the frequency and field distribution of modes in

a source free problem. In this case, the Lagrangian reduces

to Eq. (8), where we have eliminated the integral over time

by taking the Fourier transform and are now working in the

frequency domain.

Lw =
ǫ

2

∫

|∇φw + iω ®Aw |
2 − c

2 |∇ × ®Aw |
2

dv+

1

iω

∫

(−∇φw − iω ®Aw) · Y (−∇φ
∗
w + iω ®Aw

∗
) dS (8)

In the interest of brevity, we will drop the subscript with

the assumption that we are working in the frequency domain

for the rest of this section. Discretizing the solution space,

we can write φ and ®A in terms of a linear combination of

basis functions which span the solution space:

φ(®x) =
∑

i

φiξi(®x) (9)

®A(®x) =
∑

i

®Aiξi(®x) (10)

A typical set of basis functions are the nodal basis func-

tions: ξi(®xj) = δi j where ®xj is the coordinates of a node on

the element. The basis functions are known a-priori so when

the discretized solutions are substituted into the Lagrangian,

we obtain the matrix equation in Eq. (11). Here u is the

approximate solution, u = [φ1φ2, ... ®A1, ®A2, ...].

Ldiscrete = uLu
T (11)

L can be analytically or numerically calculated accord-

ing to the element geometry and basis functions selected.

Varying this lagrangian amounts to independently taking

the derivative of Eq. (11) with respect to all coefficients

∂u = (∂u1, ∂u2, ...), resulting in the system of equations:

Lu
T
= 0 (12)

A Quadratic Eigenvalue Problem

Looking closer at Lw, we note an interesting issue that

arises when solving for the potentials instead of the fields.

As mentioned previously, the Helmholtz wave equation ap-

proach has ®E and ®B decoupled from each other and each can

be solved independently. In this case, the system of equa-

tions can be written as a generalized eigenvalue problem

where the eigenvalue λ = ω2 and the eigenvector, u, corre-

sponds to the approximate ®E or ®B field: (Mλ + K)u = 0.

These problems are ubiquitous and there exist many highly

optimized linear algebra libraries capable of solving them

numerically, for both dense and sparse matrices.

If the Coulomb or Lorentz Gauge are not explicitly se-

lected prior to taking the variation of L, φ and ®A remain

coupled, introducing a new matrix term to the system of

equations: (Mω2
+ Cω +K)u = 0. C consists of the terms

arising from ∇φ · iω ®A∗
+ c.c and the boundary surface inte-

gral in Eq. (8). This is now a quadratic eigenvalue problem

and while algorithms exist for efficient numerical solution,

these types of problems end up taking twice as much mem-

ory and/or time as their linear counterparts. The issue of the

quadratic eigenvalue problem can be circumvented, however,

as will be discussed in the next section.

SPURIOUS MODES AND GAUGE FIXING

The question of gauge fixing in the context of the finite

element method leads to some interesting discussion. The

Lagrangian given by Eq. (8) is invariant the gauge transfor-

mations, ®A → ®A + ∇ψ, φ → φ −
∂ψ

∂t
, for some function ψ.

This extra degree of freedom results in an infinite number of

valid solutions and Eq.(12) becomes an ill defined system.

In practice, this manifests itself as singular matrices in the

finite element analysis.

We were thus finding experimentally that a multitude

of spurious modes were appearing. These modes appear

to be unrelated to the spurious modes typically associated

with numerical solutions to the Helmholtz equation. Such

modes have nonzero divergence and are due to mathematical

properties of the Helmholtz operator [1, 2]. The spurious

modes resulting from the operator L did not exhibit the

characteristics of conventional spurious modes such as large

divergence or small curl. Likely, these spurious modes were

a result of the badly conditioned problem.

Therefore a gauge must be selected or enforced at some

point before solving for u but the question of when to do

so is intricate. If we were to choose the Lorenz gauge, ∇ ·
®A+ 1

c2

∂φ

∂t
= 0, before taking the variation of L the resulting

operator reduces to the same as the Helmholtz operator with

its well known issue of spurious modes (discussed above).

The best known solution to avoid these spurious modes is to

use the Nedelec vector basis functions which are divergence

free. However, as compared to using nodal basis functions,

vector basis functions increase the size of the problem by

n for an n dimensional problem and will complicate the

particle tracking which is being implemented in conjunction.

This option was thus of little interest to us.

In quantum field theory, where the Lagrangian must also

be discretized (though not within a volume but over all

space), one solution is to add a gauge fixing term to the

Lagrangian [3]. The gauge fixing term used is of the form:

LGF = −
1

2α

∫

|∇ · ®A +
1

c2

∂φ

∂t
|2 dv (13)

This constrains the allowable gauge transformations, ψ,

to those where ψ satisfies the equation ∇2ψ =
∂2ψ

c2∂t2 . This is

only a partial gauge fixing, however when combined with

appropriate boundary conditions on the fields (they should

approach zero at infinity), the gauge becomes fully fixed.

Taking the variation of L with this gauge fixing term

added and applying integration by parts and vector calculus,
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we obtain Eq.(14) and (15).

δφ
L

ǫ
=

∫ ∫ (

(
µ

α
− 1)∇ ·

∂ ®A

∂t
+

µ

c2α

∂2φ

∂t2

− ∇2φ −
ρ

ǫ

)

δφ dv dt +

∫ ∮

(
∂ ®A

∂t
+ ∇φ) · n̂δφ ds dt

−
µ

α

∫

(∇ · ®A +
1

c2

∂φ

∂t
)δφ dv |

t f
ti

(14)

δA
L

ǫ
=

∫ ∫ (

(
1

ǫα
− c

2)∇ × ∇ × ®Aδ ®A+
1

ǫα
∇2 ®A−

∂2 ®A

∂t2

+ (
1

c2ǫα
−1)∇

∂φ

∂t

)

δ ®A dv dt + c
2

∫ ∮

∇× ®A× δ ®A · n̂ ds dt

−
1

ǫα

∫ ∫

(∇· ®A+
1

c2

∂φ

∂t
)δ ®A·n̂dsdt+

∫

(
∂ ®A

∂t
+∇φ)·δ ®Adv |

t f
ti

(15)

A clear choice for the parameter α is thus µ, from which

it can be seen that the Lorenz gauge is enforced. Experi-

mentally, we find that all the spurious modes which appear

when the gauge fixing term is not present, attributed to the

ill defined system, disappear. Additionally, the generalized

quadratic eigenvalue problem reduces to a linear one as the

coupling terms vanish with the appropriate basis functions,

improving performance and speed of solution. A compar-

ison of the spurious modes before adding the gauge fixing

term and after is shown in Fig. 1.

IMPLEMENTATION OVERVIEW

We have begun implementing this formulation in a 2D

FEM solver for azimuthally symmetric problems of degree

m [4]. The solver is written in C / C++ but interfaces through

Mathematica. It meshes the region defined by user, applies

the boundary conditions, calculates the local triangle matri-

ces and assembles the global matrix.

At present, we have focused on the source free case for

m = 0, for the sake of resolving the issues of gauge fixing

and spurious modes. The matrices associated with Ldiscrete

are calculated analytically for an arbitrary triangular ele-

ment. The form of the resulting analytical expressions are

optimized to reduce the number of operations and ported to

C code for integration in the FEM solver.

CONCLUSION

We have developed a new finite element formulation for

the solution of electromagnetic problems based on the La-

grangian for the electromagnetic potentials. Some of the

challenges inherent in solving for the potentials instead of

the fields have been discussed, including the possibility of a

quadratic eigenvalue problem due to the coupling of ®A and

φ and the issue of gauge invariance. A solution to both of

these problems was found in the addition of a gauge fixing

term to the Lagrangian, similar to that used in quantum field

theory.

Figure 1: Frequency of the solved TM modes for a 10 mm

x 10 mm pillbox cavity. Note the spurious modes when the

gauge fixing term is not included compared to the bottom

figure when the term is added (α = µ0) and the solved modes

correspond to physical modes in all cases

This formulation is particularly beneficial in that the final

result has none of the spurious modes inherent to numerical

solutions of the Helmholtz equation while still allowing

us to work with nodal basis functions instead of the more

computationally costly vector element basis functions.

Additionally, the formulation lays the groundwork for fu-

ture work on simulating the beam-wave interaction through

the natural accounting of the beam-wave interaction. In con-

junction to implementing this beam-wave interaction, we

are now working on the general case for m.
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