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Abstract
Top-up injection into low emittance light sources is chal-

lenging due to their inherent small dynamic apertures. The

use of a multipole-magnet injection kicker (e.g. a pulsed

quadrupole or sextupole) enables to kick the injected bunch

while the circulating beam remains undisturbed. However,

the injected bunch is mismatched due to the focusing effect

and the effective phase space required to capture it increases.

Non-linear injection kicker magnets can produce a trans-

verse step-like magnetic field distribution which prevents

this mismatch. It is crucial to maximize the spatial deriva-

tive of this field distribution in order to kick the injected

bunch inside the dynamic aperture. For the standard config-

urations of straight conductors the resulting clear aperture

is typically too small, so we have developed an optimization

tool to determine constrained current distributions required

to generate a desired magnetic field. With it we obtained

new design solutions for possible coreless injection kicker

magnets that overcome the clear aperture limitation of the

standard designs. We present an example for the injection

into SLS-2.

INTRODUCTION
The new generation of low emittance light sources have

dynamic apertures (DA) on the order of a few millimeters.

While top-up injection into such light sources is desired

for the stability of the photon beam, it is also challenging

due to the inherently small DA. Multipole-magnet injection

kickers, e.g. a pulsed quadrupole or sextupole, have been

successfully used to kick injected bunches while keeping

the circulating beam undisturbed [1,2]. However, the kicked

bunch is mismatched due to the focusing effect caused by

the linear field profile when a pulsed quadrupole is used.

In the case of a pulsed sextupole it is mismatched due to

the filamentation caused by the nonlinear field profile. As

a result the effective phase space required to capture it in-

creases. The ideal magnetic field distribution which pre-

vents the mismatch would have no field at the position of

the circulating beam (
−→
B |r=0 = 0, ∂

−→
B/∂r |r=0 = 0) and a

constant field, or field plateau, By at the position of the in-

jected bunch. Such a field can be generated by a coreless

non-linear injection kicker magnet with the use of different

configurations of straight conductors, such as the bipolar

8-conductor configuration designed and tested at Bessy [3],

or the multi-conductor approach like a unipolar massless
septum proposed at CERN [4].

We tested these configurations in simulations for the in-

jection into SLS-2, the planned upgrade of the Swiss Light
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Source. We placed the kicker magnet at the end of a straight

section and set the origin of coordinates at the position of the

circulating beam. The magnet has to provide a 2 mrad kick

at x = 5.5 mm to keep the betatron oscillations within the

DA until damped. For a 2.4 GeV light source, and assuming

a length of the pulsed magnet of 0.5 m, a field amplitude

By = 32 mT is needed.

Figure 1: Different possible configurations of straight con-

ductors for injection into SLS-2: 8-conductor (up) and mass-
less septum (down). In both cases the conductors would need

to be placed inside the beam pipe in order to create a field

spatial derivative high enough to have a zero-field and a field

plateau at the positions of the circulating and injected beam,

respectively.

We found that to get a sufficiently high field spatial deriva-

tive,ΔBy/Δx, the conductors would need to be located inside

the beam pipe, in positions where it is technically impossible
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Figure 2: Vertical position of the closest conductor (located

between the injected and circulating beams) as a function of

the transverse field spatial derivative for different conductor

configurations. The SLS-2 minimum requirement to ensure

a clear aperture larger than the beampipe is marked with a

cross, larger field gradients with larger clear apertures (i.e.

values within the green area) would also be valid.

to place them, as shown in Fig. 1. Thus, for the injection

into a low emittance ring it is crucial to maximize the spatial

derivative of the transverse field. However, comparing the

results of the studied unipolar and bipolar configurations

the observed dependence between the vertical position of

the closest conductor (located between the injected and cir-

culating beams) and the maximum transverse field spatial

derivative, shown in Fig. 2, constrains the design of coreless

non-linear kicker magnets for low emittance rings. At MAX

IV an 8-conductor kicker, of the type shown in Fig. 1 (up) is

used, and injection takes place in the linear part of the field

profile [5]. In that case this configuration can be used since

the bunches are injected directly from a Linac and their hor-

izontal emittance is only 1.7 nm·rad, for which the resulting

mismatch is acceptable. For a bunch with a larger horizontal

emittance (typically any bunch injected from a booster ring)

the mismatch would cause non-negligible losses.

OPTIMIZATION TOOL

We have developed an optimization tool to determine

constrained current distributions required to generate a de-

sired magnetic field [6]. The optimization of the conduc-

tor arrangements is formulated as a least squares mini-

mization problem using an analytic description of the mag-

netic field. We define one or several points p1 . . . pm, with

pj = (xp j , yp j ), at which target values for the magnetic field

components are specified (e.g. a given field plateau at a

given transverse position):

Tu,1, . . . ,Tu,m, with u = x, y. (1)

We then choose a number of conductors n with a current

I and calculate the magnetic field at each field point pj as:

Bx, j = −

n∑
i=1

μ0

2π

Ii(yp j − yi)

(xp j − xi)2 + (yp j − yi)2

By, j =

n∑
i=1

μ0

2π

Ii(xp j − xi)

(xp j − xi)2 + (yp j − yi)2

(2)

At this point it might be tempting to define an objective

function:

f0(X) =

n∑
j=1

[(Bx − Tx)
2 + (By − Ty)

2] (3)

for the optimization variables X =

(x1, . . . , xn, y1, . . . , yn, I1, . . . , In) and solve a constrained

optimization problem consisting of minimizing f0 subject to

equality and inequality constraints. However, this problem

is nonlinear and non-convex, making it difficult to solve

for large numbers of variables, and also making it difficult

to find a global minimum since there may be many local

minima. In contrast, convex problems can always be solved

efficiently [7]. It is not generally possible to guarantee

convexity for problems in which variables are multiplied.

We note that the equations of the magnetic field generated

by straight conductors are nonlinear in the position of

the filament, but not in the current. If we fix the position

and only vary the current we can formulate a problem in

which optimization variables are not multiplied within the

objective function. And if we fill a region of space where

we can accept to place wires in our magnet design with a

grid of conductors, then we can obtain essentially the same

information as from (3); if the current in the solution is

localized in certain regions, then we know precisely where

the wires should be positioned.

To obtain a convex problem we start by defining the

weights of the ith filament at point pj as

wx,i, j = −
μ0

2π

(yp j − yi)

(xp j − xi)2 + (yp j − yi)2

wy,i, j =
μ0

2π

(xp j − xi)

(xp j − xi)2 + (yp j − yi)2

(4)

If we define the current and weight matrices as:

I =
����

I1

...
In

����
, Wu =

����
wu,1,1 . . . wu,1,n

...
. . .

...
wu,m,1 . . . wu,m,n

����
(5)

By writing also the target values from (1) as vectors, we

can define an objective function:

f0(I) = (Wx I − Tx)
2 + (Wy I − Ty)

2 (6)

such that the optimization problem consists of minimizing

f0 subject to inequality and equality constraints GI ≤ h and
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Figure 3: Optimized current for each conductor of the input

grid.

AI = b, respectively. This enables to set constraints on the

maximum total current, on the maximum current per wire,

on the number of wires, etc. This problem was implemented

in Python using open source solvers with the Python module

cvxpy [8, 9].

EXAMPLE APPLICATION TO SLS-2
With the use of this tool we obtained new design solutions

for conductor arrangements that go beyond the limitations

of the standard designs. Some design solutions for SLS 2.0

subject to different constraints were presented in [6], where

also the design for MAX IV was revisited for a lower current

solution.

We present here just one example for the SLS-2 case. We

first create a regularly spaced grid of conductors, as shown

in Fig. 3. In this case we choose a grid with a circular clear

aperture of 10 mm radius, a conductor spacing of 3.5 mm

and an outer radius of 30 mm. We set the same target values

for SLS-2 as the ones used in the introduction section. We

also set the following constraints: maximum current per

conductor of 5 kA and maximum total current of 25 kA.

Then we solve the optimization problem and find a solution

for ten conductors with five different currents, as shown in

Fig. 3. All other conductors from the input grid are set to

zero current and we can remove them. The resulting field

profile and final conductor arrangement is shown in Fig. 4.

A sufficient field spatial derivative for injection into SLS-2

is achieved with the use of five pairs of conductors, with five

different currents, all placed outside the beam pipe.

CONCLUSIONS
None of the standard conductor configurations enables

simultaneously a clear aperture larger than the beampipe

and to fulfill the targets for a low emittance ring, namely

a zero-field at the position of the circulating beam and a

field plateau of the order of some tens of mT at a distance

of a few mm to kick the injected bunch inside the DA. We

Figure 4: Optimized configuration of conductors to generate

the magnetic field needed for injection in SLS-2.

have overcome this limitation by developing an optimization

tool to determine constrained current distributions required

to generate a desired magnetic field. It is easy to apply

constraints to the currents and conductor positions, so that it

should be possible to adapt to technical limitations while still

meeting target values for the field. We can also find out for

which constraints a solution is unlikely to be possible. With

this tool we provided some preliminary design solutions for

SLS-2, and an example that goes beyond the limitations of

the standard designs has been presented here.
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