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Abstract

Top-up injection into low emittance light sources is chal-
lenging due to their inherent small dynamic apertures. The
use of a multipole-magnet injection kicker (e.g. a pulsed
quadrupole or sextupole) enables to kick the injected bunch
while the circulating beam remains undisturbed. However,
the injected bunch is mismatched due to the focusing effect
and the effective phase space required to capture it increases.
Non-linear injection kicker magnets can produce a trans-
verse step-like magnetic field distribution which prevents
this mismatch. It is crucial to maximize the spatial deriva-
tive of this field distribution in order to kick the injected
bunch inside the dynamic aperture. For the standard config-
urations of straight conductors the resulting clear aperture
is typically too small, so we have developed an optimization
tool to determine constrained current distributions required
to generate a desired magnetic field. With it we obtained
new design solutions for possible coreless injection kicker
magnets that overcome the clear aperture limitation of the
standard designs. We present an example for the injection
into SLS-2.

INTRODUCTION

The new generation of low emittance light sources have
dynamic apertures (DA) on the order of a few millimeters.
While top-up injection into such light sources is desired
for the stability of the photon beam, it is also challenging
due to the inherently small DA. Multipole-magnet injection
kickers, e.g. a pulsed quadrupole or sextupole, have been
successfully used to kick injected bunches while keeping
the circulating beam undisturbed [1,2]. However, the kicked
bunch is mismatched due to the focusing effect caused by
the linear field profile when a pulsed quadrupole is used.
In the case of a pulsed sextupole it is mismatched due to
the filamentation caused by the nonlinear field profile. As
a result the effective phase space required to capture it in-
creases. The ideal magnetic field distribution which pre-
vents the mismatch would have no field at the position of
the circulating beam (75’>|r:0 =0, 675’)/6r|,:0 = 0)and a
constant field, or field plateau, By at the position of the in-
jected bunch. Such a field can be generated by a coreless
non-linear injection kicker magnet with the use of different
configurations of straight conductors, such as the bipolar
8-conductor configuration designed and tested at Bessy [3],
or the multi-conductor approach like a unipolar massless
septum proposed at CERN [4].

We tested these configurations in simulations for the in-
jection into SLS-2, the planned upgrade of the Swiss Light
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Source. We placed the kicker magnet at the end of a straight
section and set the origin of coordinates at the position of the
circulating beam. The magnet has to provide a 2 mrad kick
at x = 5.5 mm to keep the betatron oscillations within the
DA until damped. For a 2.4 GeV light source, and assuming
a length of the pulsed magnet of 0.5 m, a field amplitude
B, = 32 mT is needed.
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Figure 1: Different possible configurations of straight con-
ductors for injection into SLS-2: 8-conductor (up) and mass-
less septum (down). In both cases the conductors would need
to be placed inside the beam pipe in order to create a field
spatial derivative high enough to have a zero-field and a field
plateau at the positions of the circulating and injected beam,
respectively.

We found that to get a sufficiently high field spatial deriva-
tive, ABy, /Ax, the conductors would need to be located inside
the beam pipe, in positions where it is technically impossible
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Figure 2: Vertical position of the closest conductor (located
between the injected and circulating beams) as a function of
the transverse field spatial derivative for different conductor
configurations. The SLS-2 minimum requirement to ensure
a clear aperture larger than the beampipe is marked with a
cross, larger field gradients with larger clear apertures (i.e.
values within the green area) would also be valid.

to place them, as shown in Fig. 1. Thus, for the injection
into a low emittance ring it is crucial to maximize the spatial
derivative of the transverse field. However, comparing the
results of the studied unipolar and bipolar configurations
the observed dependence between the vertical position of
the closest conductor (located between the injected and cir-
culating beams) and the maximum transverse field spatial
derivative, shown in Fig. 2, constrains the design of coreless
non-linear kicker magnets for low emittance rings. At MAX
IV an 8-conductor kicker, of the type shown in Fig. 1 (up) is
used, and injection takes place in the linear part of the field
profile [5]. In that case this configuration can be used since
the bunches are injected directly from a Linac and their hor-
izontal emittance is only 1.7 nm-rad, for which the resulting
mismatch is acceptable. For a bunch with a larger horizontal
emittance (typically any bunch injected from a booster ring)
the mismatch would cause non-negligible losses.

OPTIMIZATION TOOL

We have developed an optimization tool to determine
constrained current distributions required to generate a de-
sired magnetic field [6]. The optimization of the conduc-
tor arrangements is formulated as a least squares mini-
mization problem using an analytic description of the mag-
netic field. We define one or several points pj . .. p,,, with
pj = (Xp;» ¥p, ), at which target values for the magnetic field
components are specified (e.g. a given field plateau at a
given transverse position):

Ty, -5 Tym, withu = x,y. (1)
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We then choose a number of conductors n with a current
I and calculate the magnetic field at each field point p; as:

B. . —_ z @ Ii(ypj _)’i)
x’J P 27 (xp; — x;)? + (p; — vi)?
1 Ii(x Xi) @
Ho i(Xp; — X
By = -

21 (xp; - xi)2 + (vp; — ¥i)?

At this point it might be tempting to define an objective
function:

foX) = D [(Be =T + (By - Ty )] (3)
j=1

for the optimization variables X =
(X1 ey Xp> V1s - - -» Yo 115 . . ., 1) and solve a constrained
optimization problem consisting of minimizing fy subject to
equality and inequality constraints. However, this problem
is nonlinear and non-convex, making it difficult to solve
for large numbers of variables, and also making it difficult
to find a global minimum since there may be many local
minima. In contrast, convex problems can always be solved
efficiently [7]. It is not generally possible to guarantee
convexity for problems in which variables are multiplied.
‘We note that the equations of the magnetic field generated
by straight conductors are nonlinear in the position of
the filament, but not in the current. If we fix the position
and only vary the current we can formulate a problem in
which optimization variables are not multiplied within the
objective function. And if we fill a region of space where
we can accept to place wires in our magnet design with a
grid of conductors, then we can obtain essentially the same
information as from (3); if the current in the solution is
localized in certain regions, then we know precisely where
the wires should be positioned.

To obtain a convex problem we start by defining the

weights of the i’" filament at point p j as

oMo (p; = i)
2 (xp, = xi)2 + (o, — 0i)?
“)
o= HO (xp; — xi)
P2 (e, = xi)2 + (v, — yi)?
If we define the current and weight matrices as:
I W, 1,1 Wu,1,n
I= s Wu = . (5)
I, Wuy,m,1 Wu,m,n

By writing also the target values from (1) as vectors, we
can define an objective function:

fol) = (Wil =Ty )* + (WyI = Ty)? (6)

such that the optimization problem consists of minimizing
fo subject to inequality and equality constraints GI < h and
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Figure 3: Optimized current for each conductor of the input
erid.

Al = b, respectively. This enables to set constraints on the
maximum total current, on the maximum current per wire,
on the number of wires, etc. This problem was implemented
in Python using open source solvers with the Python module
cvxpy [8,9].

EXAMPLE APPLICATION TO SLS-2

With the use of this tool we obtained new design solutions
for conductor arrangements that go beyond the limitations
of the standard designs. Some design solutions for SLS 2.0
subject to different constraints were presented in [6], where
also the design for MAX IV was revisited for a lower current
solution.

We present here just one example for the SLS-2 case. We
first create a regularly spaced grid of conductors, as shown
in Fig. 3. In this case we choose a grid with a circular clear
aperture of 10 mm radius, a conductor spacing of 3.5 mm
and an outer radius of 30 mm. We set the same target values
for SLS-2 as the ones used in the introduction section. We
also set the following constraints: maximum current per
conductor of 5 kA and maximum total current of 25 kA.
Then we solve the optimization problem and find a solution
for ten conductors with five different currents, as shown in
Fig. 3. All other conductors from the input grid are set to
zero current and we can remove them. The resulting field
profile and final conductor arrangement is shown in Fig. 4.
A sufficient field spatial derivative for injection into SLS-2
is achieved with the use of five pairs of conductors, with five
different currents, all placed outside the beam pipe.

CONCLUSIONS

None of the standard conductor configurations enables
simultaneously a clear aperture larger than the beampipe
and to fulfill the targets for a low emittance ring, namely
a zero-field at the position of the circulating beam and a
field plateau of the order of some tens of mT at a distance
of a few mm to kick the injected bunch inside the DA. We
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Figure 4: Optimized configuration of conductors to generate
the magnetic field needed for injection in SLS-2.

have overcome this limitation by developing an optimization
tool to determine constrained current distributions required
to generate a desired magnetic field. It is easy to apply
constraints to the currents and conductor positions, so that it
should be possible to adapt to technical limitations while still
meeting target values for the field. We can also find out for
which constraints a solution is unlikely to be possible. With
this tool we provided some preliminary design solutions for
SLS-2, and an example that goes beyond the limitations of
the standard designs has been presented here.
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