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Abstract

A uniformly irradiating beam is beneficial in spallation for

preventing irregular wear on the target. For octupoles (n = 4)

and higher-order (n = 4N) magnets, passing charged-particle

bunches undergo symmetric shaping effects along the x and

y axes. Using a Lie-mapping formalism, we illustrate how

well Gaussian distributions can be flattened symmetrically

in 2D with single, dual-pulse, and RF magnets of 4N order.

Incidental shaping effects are also discussed.

INTRODUCTION

For charged particle or ion bunches, an octupole displaces

the outermost particles, reshaping a Gaussian transverse

profile to a flattened or concave one [1]. Inherent to this

flattening property is a four-fold rotational symmetry oc-

tupoles impart on transverse beam distributions (specifically,

symmetry along each x–y diagonal).

Because of this, it is standard practice to introduce oc-

tupoles in pairs with respective quadrupoles so that their

effects are only appreciable along one axis. This negates the

defocusing of off-center particles near the diagonals. Such

an approach is common when correcting high-order errors

in beam-focusing or beam-steering optics [1–4].

With this single-axis flattening, however, a number of

transverse and longitudinal shaping phenomena are disre-

garded. This study considers such effects, beginning with a

discussion of the octupole and octupole-like Hamiltonians

in a symplectic Lie-algebra formalism. It is shown that x–y

decoupled, alternating-gradient, and dual-pulse multipoles

can act on transversely symmetric 2D bunches to induce a va-

riety of shaping effects such as low-loss flattening, isotropic

focusing, transverse trapping, and longitudinal momentum

dilation.

4N-POLE SYMMETRY

In previous works, we reviewed the Lie-algebra formalism

which implicitly preserves symplecticity in calculating the

trajectories of bunched particles under nonlinear potentials

[5, 6]. In this approach, a position or momentum coordinate

can be tracked as

c = e−t:H :c0 , (1)

where t is traversal time through the element, H is the

machine-element’s Hamiltonian, and the colons denote Lie

brackets:
(
∂ f (x,p)

∂x

∂g(x,p)
∂p

−
∂g(x,p)

∂x

∂ f (x,p)
∂p

)
. These absorb

any variable falling to the right as the g(x, p) term. Here,

the exponential can be expanded in series and truncated at a
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desired precision (resulting in nested Lie brackets) or sim-

plified with Yoshida’s symplectic integration approach [7].

The component of the Hamiltonian corresponding to the

external potential from a multipole magnet can be repre-

sented as a complex binomial:

K(x + iy)n , (2)

where the real and imaginary terms correspond to normal

and skew orientations, respectively. To derive the field gra-

dient K , we begin with [8, 9]:

κn =
e · B0

�p‖(n − 1)! a
(n−1)
0

[m−n] , (3)

where e is particle charge, �p‖ is longitudinal momentum,

and B0 and a0 are the pole-tip magnetic flux and radius,

respectively. Noting that any binomial expansion results in

terms of cumulative order n, the potential term for a normal

multipole

κn · Re(x + iy)n , (4)

is thus unitless. We can then normalize to

Kn = κn · KE , (5)

where KE is kinetic energy. This results in a Hamiltonian

with units of energy:

Hn = Kn · Re(x + iy)n +
�p2
⊥

2m
. (6)

Lie-algebra tracking with this normalization has been

cross-checked with the beam-physics simulation package

Tracewin [10] for the results to follow, unless otherwise

noted.

For a normal octupole, the potential term is

K4(x
4 − 6x2

y
2
+ y

4) , (7)

What is noteworthy here is that the leading-order terms are

both positive (since i4n = 1), resulting in the observed four-

fold rotational symmetry. This carries for higher-order 4n-

pole magnets, where the sign parity of like-order terms en-

sures identical distributions along the x and y axes. For

example, the potential term for the hexadecapole is

K8(x
8 − 28x6

y
2
+ 70x4

y
4 − 28x2

y
6
+ y

8) . (8)

To generalize, any n = 4N pole magnet could be considered

"octupole like", with all other n = 2N pole magnets as

"quadrupole like". In the latter case, x and y profiles may

have symmetry about their own axes, but their profile shapes

are always dissimilar. For both cases, as the number of poles

is increased, the shaping effect converges toward a circular

2D profile, with particles along the circumference forming

narrowing cusps.
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DECOUPLING

Recent works have demonstrated that octupoles can be

virtually decoupled in a periodic lattice by using quadrupole

and dipole inserts on either side of an octupole [11,12]. That

is,

H4 = K4(x
4 −

�
�
�

6x2
y

2
+ y

4) . (9)

Figure 1 illustrates that such a magnet may be used for im-

proved beam flattening. Since decoupled multipoles are not

implemented into Tracewin, these simulations were carried

out solely with an ab-initio Lie-algebra code, using rudimen-

tary space-charge kicks on either side of the magnet:

p = p0 +
C

2
erf

(
x

σx

)
, (10)

with

C =
It

6π
, (11)

where I is beam current and the factor of 1/2 in Eqn. 10

reflects a halving of the magnet length and “erf” is the error

function. This equation was verified to match Tracewin

for Gaussian distributions in drift spaces with wide enough

apertures to avoid image effects.

A key trait of the decoupled octupole is its virtually loss-

less flattening: a coupled magnet of matched strength can

only produce a similarly flattened profile by ejecting a sig-

nificant percentage of its outermost particles. For example,

the coupled octupole in Fig. 1a loses 1% of its particles to

beyond 6 σx whereas the decoupled octupole’s losses are

0.1%.

(a) (b)

Figure 1: Surface plot of Gaussian distributions (100k

protons) passing through (a) coupled and (b) uncou-

pled octupoles, normalized to maximum bin occupancy.

Beam and magnet parameters are otherwise identical:

a0 = 25 [mm], ε⊥ = 0.5 [π ·mm ·mrad], β⊥ = 1 [mm/(π ·
mrad)], B0 = 3 T,KE = 4 MeV, I = 30 mA, and magnet

length L = 500 mm.

As field strength is increased, focusing can also be ob-

served in decoupled magnets with a reduced loss rate (i.e.

a reduction of σx by 50% with ∼7% ejecta for decoupled

magnets and �30% for coupled magnets).

However, the use of Eq. 9 in obtaining these results must

be considered an idealization, since in practice, the inserts

required for virtual decoupling are calibrated via thin-lens

approximation.

RF OCTUPOLES

Although better flattening can be achieved with coupled

octupoles than that of Fig. 1a, it typically requires a sig-

nificant dilation of the transverse dimensions. This can be

improved if we consider alternating-current n = 4N pole

magnets operating between 1 MHz and 1 THz. For the

present work, this effect was simulated with stepped waves

(i.e. successive kicks of −9,−6,−3, 0, 3, 6, 9 T as one half-

cycle).

For low field strength–emittance ratios, this effectively

creates a virtual aperture: Initially, a shell of the outermost

particles is lost in the first few cycles. After a few hundred

cycles (∼ 100 mm), the beam distribution tends toward

a conical shape and with a reduced loss rate. This effect

holds for Gaussian distributions, but is more easily observed

with waterbag or KV distributions. When accounting for

space charge, the shaping effects are similar, with losses

occurring at a constant rate proportional to beam current.

At higher field strengths, losses can be eliminated altogether,

with transverse positions effectively trapped after an initial

dilation.

Figure 2 shows the longitudinal effects of trapping a

50 MeV electron beam. With an initial σz′ of 0.0005 mrad,

the longitudinal momentum quickly dilates symmetrically

(Fig. 2a). Particles with high transverse momenta then begin

to recirculate in the positive z′ direction (Fig. 2b). Here,

an extremely small pole-tip aperture is used to exaggerate

the effect — with a more realistic parameters, a dilation in

momentum of a factor of 10 can be observed, with a similar

concentration of the electron population in the positive z′

direction.

The cost of such a shift is incurred as emittance gains

(proportional to beam current). Here, the longitudinal emit-

tance increases steadily, but transverse emittance levels off

quickly as the particles become trapped.

At higher frequencies, hollowing can be observed (Fig 3a),

with the bunch collapsing centrally as the magnet length is

increased (Fig 3b). Similar effects were reported in [13–15].

In this case, hollowing can be seen as an extension of

beam flattening—a beam becomes approximately flat before

its central population is forced toward the halo.

Moreover, at these frequencies but increased field

strengths, focusing can be achieved with zero ejecta (which

forgoes hollowing and rapidly condenses the central region).

DOUBLE-PULSE SHAPING

The aforementioned traits of alternating-gradient multi-

poles may be worth investigating further, but the fabrication

of such devices is likely to require prohibitive stress toler-

ances or materials costs.

For a more practical design, an initial octupole can provide

a brief high-strength pulse so that a passing bunch arrives at

the second octupole with a compacted momentum distribu-

tion but before its position distribution has been significantly

altered. The second magnet then gives a longer, weaker

pulse which effectively traps the perturbed central trajec-
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(a)

(b)

Figure 2: Transverse–Longitudinal density mapping for

500k electrons in a 10 GHz RF octupole at (a) 40 mm and

(b) 400 mm; a0 = 1 [mm], ε⊥ = 0.25 [π · mm · mrad], ε‖ =
0.35 [π · mm · mrad], β⊥ = 4 [mm/(π · mrad)], β‖ =
5 [mm/(π · mrad)], B0 = 10 T,KE = 50 MeV, I = 100 mA.

(a)(a)

(b)

Figure 3: Beam hollowing and subsequent collapse of elec-

trons (100k, Gaussian) in a 1 THz, Bmax = 9 T, RF octupole:

a0 = 20 [mm], ε⊥ = 0.25 [π ·mm ·mrad], β⊥ = 4 [mm/(π ·
mrad)],KE = 0.75 MeV, I = 62 mA. Magnets lengths are

0.375 and 0.778 m and momenta are scaled to maxima of

20.9 and 24.5 mrad for (a) and (b) respectively.

tories. This results in a sharper beam flattening than can

be achieved with individual magnets, with an improvement

comparable to that shown in Fig. 1. This scheme induces

negligible losses when shaping to a bunch perimeter of∼3σx .

By increasing the initial pulse strength, a width reduction to

∼2σx can be achieved with ∼1% losses.

CONCLUSIONS

Octupole and octupole-like magnets are shown to act with

four-fold rotational symmetry in the transverse plane. While

the effect of such magnets is a flattening of the transverse

momentum and position distributions in turn, any rapid, pro-

nounced shaping carries inherent particle losses. To address

this, decoupling, high-frequency alternating gradients, and

dual-pulse kicks may be beneficial. The incidental phenom-

ena of transverse-beam trapping, longitudinal momentum

dilation, and beam hollowing may also merit further study.
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