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Abstract
Beam tracking software for accelerators typically falls

into two categories: fast envelope simulations limited to
linear beam optics, and slower multiparticle simulations
that can model nonlinear effects. To find a middle ground
between these approaches, we introduce virtual coordinates
in position and momentum which have a cross-dependency
(i.e. p∗ = f (x0) where x0 is an initial position and p∗ is
a virtual projection of momentum onto the position axis).
This technique approximates multiparticle simulations with
a significant reduction in calculation cost.

INTRODUCTION
The software for predicting and correcting beam dynamics

in real time is largely dependent on approximations that treat
the phase-space density as a single envelope [1, 2], while
multiparticle tracking codes that can account for nonlinear
forces are more CPU-intensive and only suitable for machine
design or offline diagnostics [3, 4]. In developing the ESS
Linac Simulator (ELS), our group intends to incorporate
nonlinear tracking without sacrificing real-time diagnostics
capability.

Expanding on prior works [5, 6], we introduce a multipar-
ticle optimization method by using “virtual” phase-space
coordinates that allow for the independent calculation of
position and momentum densities. It is important to classify
these coordinates as non-physical: they are derived assuming
a cross-dependency exists (e.g. p∗ = f (x0), where p∗ and
x0 are virtual momentum and real position, respectively).
When used in conjunction with standard techniques for

multiparticle tracking, these virtual coordinates allow for
the use of monovariate polynomials, which present a signifi-
cant reduction in the number of required calculations when
compared with the bivariate polynomials normally needed.

Although the results to follow consider only multiparticle
tests, these techniques may be integrated into beam-envelope
simulations by building contour maps from low-particle-
count samples.

THEORY
For simplicity, we will begin by considering only trans-

verse motion along a single axis with an initial Gaussian
distribution (though we will test the resulting approximation
in 2D on various initial distributions).

The starting point for this method, outlined in Ref. [6], in-
volves taking particle count N as an invariant as the position
∗ ben.folsom@esss.se

and momentum envelopes ρx and ρp evolve:∫
ρLx dxL =

∫
ρ0
xdx0 =

∫
ρLpdpL =

∫
ρ0
pdp0 = N . (1)

where ρLx and ρ0
x are the respective final and initial position

densities, and likewise for the momentum densities.
To exploit this identity, ρLx must be independent of p0.

This can be accomplished using the approximation [7, 8]

p0 ≈ −
α

β
x0 , (2)

where α and β are the well-known Twiss parameters. Un-
fortunately, this approximation is only valid if the previous
history of the beam is linear (thus maintaining elliptical
phase space densities). Since we want an algorithm that
remains accurate for iterated nonlinear kicks (which develop
irregular density profiles), a new approximation is needed.

Proceeding under the constraint that the initial distribution
is Gaussian in both x and p, we can solve Eq. 1 for x0 and
p0. ∫

ρ0
xdx0 =

∫
ρ0
pdp0 (3)

1
2

erf

(√
2x0

2σx0

)
=

1
2

erf

(√
2p0

2σp0

)
,

which yields

p0 =
√

2σp0 erfinv

(
erf

(√
2x0

2σx0

))
= x0

σp0

σx0

. (4)

This solution does produce a bigaussian phase-space ellipse,
but is unsuitable for approximating p0 with distributions of
an irregular shape.
We continue by guessing that a solution exists for

p0 = f (x0) for irregularly shaped distributions. Denoting
these solutions as p∗ and ρ∗p for momentum and momentum
density, respectively, we have∫

ρ∗p(p0) dp∗(x0) =

∫
ρ0
pdp0 , (5)

where it is critical to note that p∗ is solely dependent on
x0, while ρ∗p remains a function of p0 (and likewise for x∗

and ρ∗x). With the left-hand-side integrand and integration
variables decoupled, it follows (for both x∗ and p∗):

N = x∗ρ∗x =
∫

ρ0
xdx0 (6)

N = p∗ρ∗p =
∫

ρ0
pdp0 .

Exploiting particle-count invariance again, and squaring N ,
we can assert that

N2 = C = ρ∗xρ
∗
px∗p∗ , (7)
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and thus
d

dx0
C +

d
dp0
C = 0 . (8)

We can then simplify, treating all p0-dependent terms as
f (p0):

0 =
d

dx0
C +

d
dp0
C (9)

=
∂ρ∗x
∂x0

(
ρ∗px∗p∗

)
+
∂p∗

∂x0

(
ρ∗xρ

∗
px∗

)
+ f (p0)

=
∂ρ∗x
∂x0

(∫
ρ0
pdp0 x∗

)
+

∂p∗

∂x0

(∫
ρ0
xdx0

∫
ρ0
pdp0

p∗

)
+ f (p0) .

Then, dividing by
∫
ρ0
pdp0, the expanded f (p0) terms be-

come zero and we have:

0 =
∂ρIx
∂x0

x∗ +
∂p∗

∂x0

1
p∗

∫
ρ0
xdx0 (10)

=
∂ρ∗x
∂x0

x∗ +
∂p∗

∂x0

1
p∗

x∗ρ∗x

=

(
∂ρ∗x
∂x0
+
∂p∗

∂x0

1
p∗
ρ∗x

)
.

By reusing Eqn. 6, all p0 dependence can be eliminated,
leaving

∂p∗

∂x0
= −p∗

ρ0
x∫

ρ0
xdx0

= −
p∗ρ0

x

Υx
,−

2p∗ρ0
x

Υx
(11)

where the second solution can be obtained integrating by
parts, and, in the case of a Gaussian initial distribution, the
placeholder in the denominator is defined as

Υx ≡
1
2

erf

(√
2x0

2σx

)
. (12)

Thus, in contrast with Eq. 4, we have an expression where
∂p
∂x is no longer constant.
We now check the following approximation:

p∗ ≈ −2 sinh
(
ρ0
x

Υx
x0

)
D (13)

Where we normalize D using Eq. 4; setting to p∗ ≈ −p0
near |x0 | = 0 , leaving

p∗ ≈ 2 sinh
(
ρ0
x

Υx
x0

)
x0
σp

σx
(14)

which can be shown numerically to agree with Eqn. 11 for
|x0 | . 6 σx .
At this point, the updated particle postition xL can be

calculated using an exponential Lie-operator method [9]:
xL(x0, p∗) = {exp [ −t : H (x0, p0) : ] x0}|p0→p∗ . (15)

where t is elapsed time in the lab frame and the Hamiltonian
for a normal multipole magnet in the transverse plane is

H =
e
p

k · Re(x0 + iy0)
n

an−1
0 n!

+
(p0)

2

2m
. (16)

Here, e, p, m, and a0 are the fundamental charge, reference
longitudinal momentum, particle mass, and magnet-pole
raidus, respectively; n = 3, 4, 5... for sextupoles, octupoles,
decapoles, etc; and k has units of [T ·m−1]. In the following
sections, longitudinal momentum is normalized to 1 GeV/c
and a0 is set to 20 mm unless otherwise noted.
In implementing Eq. 15,H must be calculated symbol-

ically first for each element. Then, p∗(x0) and x0 are sub-
stituted in at each step, reducing the bivariate xL(x0, p0)
to a monovariate xL(x0, σx, σp), where σx and σp remain
constant for a given timestep.
Although an analogous x∗(p0) can be derived, it is not

useful in practice. Specifically, in calculating Eq. 16 in
2D for position and momentum – xL(x0, y0, p∗x, p∗y) and
pxL(x∗, y∗, px0, py0) – the resulting xL expression is depen-
dent on σx and σpx , while pL is dependent on σx , σy , σpx ,
and σpy , rendering it computationally inefficient. Other
schema involving alternate forms such as pL(x0, p∗) have
been checked, but the following is found to be most stable,
with notable performance gains:

x1, y1, px1, py1→ xL(x0, y0, p∗x, p∗y), yL(x0, y0, p∗x, p∗y)

pxL(x0, y0, px0, px0), pyL(x0, y0, px0, py0)

↓

x2, y2, px2, py2→ xD(x1, y1, px1, py1), yD(x1, y1, px1, py1)

pxD(x1, y1, px1, py1), pyD(x1, y1, px1, py1)

(17)
Where the D subscript denotes a drift space of at least five
times the kick length. This effectively limits the technique
to a thin-lens approximation. Such drift spaces can be re-
served for incorporating space-charge effects, leading to a
comparable number of calculation steps using Eq. 17 versus
a standard nonlinear beam-physics code.

MULTIPARTICLE SIMULATION
Figure 1 compares the accuracy of multiparticle transfor-

mations following Eq. 17 with and without using p∗. Also
shown are tests for p∗ = 0 and a “naive" approximation,
where p∗ ≈ p0 from Eq. 4 is used in the low |x0 | limit of
Eq. 14:

p∗ ≈ −x0
σp

σx
. (18)

To emphasize visible discrepancies, the results shown have
their σ values updated after each timestep by taking a new
standard deviation. However, if mean absolute deviations
are taken instead, an improved matching with the baseline
can be observed.
Both the naive and null-momentum approximations fail

at σp & σx (i.e. at energies exceeding 1 GeV). Figure 2
illustrates such a case for 2D Gaussian proton distributions
with a kinetic energy of 8 GeV passing through an octupole
magnet. In the 2D case, beam parameters were derived
relativistically from Twiss parameters and B0 by normalizing
the kinetic term in Eq. 16 to the beam’s average kinetic
energy then verified against Tracewin [10].
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(a) Error-function Approximation
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(c) Null-momentum Approximation

Figure 1: Iterated use of Eq. 14 versus standard Lie trans-
port results in 1D for 100,000 protons with initial Gaussian
distributions of σx = 10 mm, σp = 0.01 rad (a). Also
shown are two alternate p∗ approximations: p∗ = x0

σp

σx
in

(b) and p∗ = 0 in (c). The transport map consists of 200
octupole–drift sections: B0 = 10 [T], Loct = 0.1 [mm],
Ldri f t = 1.0 [mm]. Lie transforms are truncated to fifth
order.

CONCLUSION
For the non-null p∗ approximations, performance im-

proves with increasing particle count, with increasing mag-

Figure 2: Iterated octupole transforms for 2D Gaussian
bunches of 100,000 protons at 8 GeV: a0 = 15 [mm], ε⊥ =
0.25 [π · mm · mrad], β⊥ = 1 [mm/(π · mrad)]. The map
consists of 400 kick–drift sections: B0 = 12 T, Loct =

0.2 [mm],Ldrift = 2 [mm], for an integrated field strength
of 0.211 [T/m2].
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Figure 3: Raw memory-allocation cost for multiparticle sim-
ulations with k and L parameters matching those of Fig. 1.
Number of particles: 10,000. Number of simulated seg-
ments: 5.

netic pole count, and particularly with increased order of
Lie-transform series truncation (Fig. 3). Since trajectory
variations are negligible beyond a 6th-order truncation in
most cases, the average reduction in CPU overhead using
Eq. 14 is roughly 15%.
Similar results were obtained for sextupoles, decapoles,

and high-order magnets, as well as with waterbag distribu-
tions, despite the assumption of a Gaussian shape in deriving
Eq. 14. At low energies (or specifically, any low σp

σx
ratio),

all three approximations tested have essentially identical re-
sults, with escalating performance in the following order:
p∗ = ( f [erf]); p∗ = −x0 · σp/σx ; p∗ = 0 .
For all the approximations tested, trajectories only became

unstable in cases where the momentum of the baseline ex-
ceeded ∼100σp . Thus, the major limitation to this technique
is its large drift–kick ratio requirement.
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