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Abstract

Electro-magnetic field for given trajectory of an electron

is calculated by Lienard-Wiechert potential. The field near

the electron moving in an undulator is presented. The field

is regarded as a wake field in the undulator. We calculate the

wake field based on the integrated Green function, which is

used to analyze a bunch motion..

INTRODUCTION

Charged particles moving with the position and veloc-

ity (x ′(t ′), v′(t ′) given as a function of time t ′ induce an

electromagnetic field in space-time (x, t) as follows,

E =
e

4πε0

[

n − β′

γ2κ3R2
+

n × ((n − β′) × α′)

κ3R

]

(1)

B =
1

c
n × E . (2)

We call a moving charged particle that induces an electro-

magnetic field as a source particle. R is a vector from the

position of the source particle (x ′) to the position (x) to

observe the electromagnetic field, R and n are its norm and

unit vector.

R = x − x
′ R = |R | n =

R

R
. (3)

κ = 1 − n · β′ and α′ = dβ′/d(ct ′). The relation between

the time at which the source particle is moving (t ′) and the

observed time (t) is given by

t = t ′ +
R

c
. (4)

We are interested in motion of the beam. Another charged

particle (called observation particle) is placed in the obser-

vation position (x, t) The position to observe the electromag-

netic field is very close to the source particle. The observed

particles which move at a speed β, experience Lorentz force.

We use the position along beam line, s as time variable.

Longitudinal variable z is difference of arrival time for light

emitted at s = 0, z = c(t0− t) = s−ct, where t = 0 is arrival

time of the light, s = ct0. Canonical momentum for z is

∆E/E0. The transverse axis on the plane of moving particle

is x and that perpendicular to x and s is y. The canonical

momenta (px, py ) are normalized by E0/c. Electro-magnetic

field at s is induced by the source particle at a different

location, s′, which is determined by the time relation of

Eq.(4). The relation between s and s′ is translated to

s − z = s′ − z′ + R(x, y, s − s′). (5)
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The motion of the particles in the undulator is represented

as function of s′ by:

x ′(s′) =

K

p̄sγku
sin ku s′, p̄′s ≡

√

1 −
1 + K2/2

2
,

z′(s′) = −
1 + K2/2

2γ2
s′ −

K2

8γ2ku
sin 2ku s,′

β′x (s′) =

p′s

p̄′s

K

γ
cos ku s′,

β′s (s′) =

1

1 +
1+K 2/2

2γ2 +
K 2

4γ2 cos 2ku s′
≡ p′s, (6)

α′x (s′) = −
p′2s K ku

p̄′sγ
sin ku s +

K3ku

2p̄′sγ
3

sin 2ku s′ cos ku s′,

α′s (s′) =

p′s β
2
sK2ku

2γ2
sin 2ku s′.

All variables are expressed by s′ explicitly in this expres-

sion. We first give x ′ and z′ expressions as an approxi-

mation, and β and α are given by t ′ derivative of x ′, z′,

where d/(cdt ′) = (1 − dz/ds)−1d/ds′. This expression is

approximation, because β2
x + β

2
s , 1 − 1/γ2. We use these

expressions to treat detailed positions of source and observer

in the field calculation.

K and ku characterize the magnetic field of the undulator.

By (s) = B0 sin ku s K =
B0

mcku
(7)

We calculate the electromagnetic field at (x, y, z) at a cer-

tain s. Lorentz force, which another charged particle located

at (x, y, z; s) experiences, is evaluated by the electromag-

netic field. Lorentz force, which is convoluted by the beam

distribution, is used to study a collective motion of the beam.

It is necessary to know the position s′ where the source

electron induces an electromagnetic field at (x, y, z; s). Eq.

(5) gives an implicit relation for s′, thus root finding has to

be done. Once s′ is given, particle motion is determined by

Eq.(6).

The relation between z − s′ for given x is shown in Fig.

1. By the way, this figure is given without solving s′, but is

plotted z for given x, s′. The parameters used are energy E

= 8 to GeV, λu = 2π/ku = 1.8 cm, K = 1.5. s = 1 m.

Fig.1 showed singular behavior at s′ ≈ 1 m, −z = (1 +

K2/2)/(2γ2) = 4.3 mm. This is due to that Eq.(5) is treated

with different approaches for s > s′ or s < s′. s′ can be far

smaller than s, since R and (s − s′) cancel for s > s′. s ≈ s′

for s < s′. Oscillation amplitude of orbit in the undulator
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Figure 1: z − s′ relation at s = 1 m.

(|x ′ | = K/(kuγ) = 0.27 µm) is negligibly small compare

with the beam size (σx ≈ 23 µm). Ignoring the modulation

in z, Eq.(5), which is reduced to a quadratic equation, has

the following approximated solution,

s′ =

−z + s−z

2γ2
z

−

√

(

z + s

2γ2
z

)2

+

(

1

γ2
z

+
1

4γ4
z

)

(x2
+ y2)

1

γ2
z

+
1

4γ4
z

.

(8)

This equation gives an approximated s′ for given z. It can

be used as an initial value for the root finding of Eq.(5).

When solving using the derivative in s > s′, the z mod-

ulation in the undulator period disturbs the convergence to

solve Eq.(5) for an initial value of s′ far from the solution.

By using the approximate s′, the solution is smoothly given.

κ = (1 − n · β′) characterizes relation of the observation

position (x, y, s) for moving direction of the source particle.

Figure 2 shows κ. The behavior changes drastic at z =

−4.3 nm similar as Fig.1. κ has frequency component of

(1 + K2/2)λu/γ
2for z > −4.3 nm. The frequency in κ

becomes slower z < −4.3 nm for x , 0.
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Figure 2: κ as function of z.

Now we are ready to calculate the electro-magnetic field

and Lorentz force at position (x, y, z, s) for single electron.

For given (x, y, z, s), s′ is obtained by root finding. Parti-

cle motion in Eq.(6) is given as a function of s′. Electro-

magnetic field is evaluated by Eq.(1).

Figure 3 and 4 show Lorentz force Fz and Fx for longi-

tudinal and horizontal directions. The force is calculated

along z for x = 0, 1, 10 µm. Source electron is located

at z = −4.3 nm (s = 1 m). Fig. 3(top) depicts Fz near

the source electron. Lorentz force is singular near the elec-

tron. For x = 0, Fz is repulsive negative at downstream

Periodic force, at upstream at z > −4.3 nm is seen in un-

dulator. The period λr = 0.15 nm is consistent with the

formula, (1 + K2/2)λu/γ
2. The spiky force indicates to

contain high frequency component. Fig. 3(bottom) depicts

Fz at z ∼ −4 nm. The force is periodic and spiky, but phase

shift for x is seen.

Figure 4 shows the horizontal Lorentz force. The behavior

is similar to that of Fs .
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Figure 3: Lorentz force Fz near source particle. Top and

bottom depict that near and upstream of the source particle.

INTEGRATED GREEN FUNCTION

To study beam motion under the self electro-magnetic

field, high frequency component, which we are not interested

in, is removed by the Integrated Green Function. We study

the beam motion, whose the transverse size is 23 µm and

the length is 1 µm. Mesh size is chosen ∆x = ∆y = 4 µm in

transverse, and the covered area is ±64×64 µm2 with 32×16

meshes, where the vertical force is symmetric. Longitudi-

nal mesh is chosen ∆z = 0.01 nm, because the undulator

radiation is essential for the beam motion. The integrated

Lorentz force is integrated once more for s along electron tra-

jectory with multiplying the velocity to calculate the energy

loss/gain.

∫ Lu

0

βs (s)ds

∫

∆x∆y∆z

Fs (x, y, z, s)dxdydz

∫ Lu

0

βx (s)ds

∫

∆x∆y∆z

Fx (x, y, z, s)dxdydz (9)

The integration step inside of a mesh in x, y, z is dx = 0.1λc
[1], where λc is characteristic wave length of the undulator
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Figure 4: Lorentz force Fx near source particle. Top and

bottom depict that near and upstream of the source particle.

radiation, λc = 4πE/(3γ3ecB0). The step for transverse

is dx, dy = 2γdz. The spiky behavior and phse shift seen

in Figs.3 and 4 are smeared and averaged by the integral.

Figures 5 and 6 show integrated Lorentz force of Fz and Fx ,

respectively. z = 0 is re-coordinated as the position of the

source electron. Oscillation for z corresponds to undulator

radiation. The force basically decreases for a large z, because

of radiation from early s. We can see a phase shift for x. For

a large x, the force increases large z. The coherence for the

undulator radiation is recovered at a large z.

CONCLUSION

Electro-magnetic field was evaluated for an electron mov-

ing in an undulator using Lienard-Wiechert potential. In-

tegrated Green Function was obtained from Lorentz force

of the electro-magnetic field. Effects of three dimensional

near field on beam in undulator can be studied using the

Integrated Green Function.
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Figure 5: Integrated Lorentz force, Fz . The scale of z is

different in top and bottom.
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Figure 6: Integrated Lorentz force, Fz . The scale of z is

different in top and bottom.
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