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Abstract

The SPring-8 upgrade project has adopted the hybrid

MBA lattice to achieve the emittance of about 100 pmrad at

6 GeV. This optics has two dispersion bumps in a unit cell

where chromaticity-correcting sextupoles locate. The hor-

izontal and vertical betatron phases between these bumps

are tuned to be about 3π and π, respectively, to cancel the

low order contributionsof nonlinear kicks due to sextupoles.

However, it is not easy to obtain a sufficiently large dynamic

aperture (DA) since (i) the cancellation is incomplete due

to a nested arrangement, (ii) sextupoles are very strong, and

(iii) the number of tuning knobs is limited. The DA is quite

small due to the leakage of nonlinear kicks by nested sex-

tupoles. We hence proposed to install additional weak sex-

tupoles between the dispersion bumps to suppress the leak-

age kick further. Simulations show that this simple scheme

is very effective for suppressing amplitude-dependent tune

shift (ADTS) and for enlarging DA.

INTRODUCTION

The SPring-8 upgrade project is ongoing, aiming at an ex-

tremely small electron beam emittance for generatinghighly

brilliant and highly coherent X-rays [1, 2]. To this end, we

adopted a 5-bend achromat lattice as shown in Fig. 1 for

the new storage ring (SPring-8-II). Machine parameters of

the new ring are listed in Table 1. The natural emittance is

157 pmrad at 6 GeV and it is expected to be reduced to about

100 pmrad with the use of the radiation damping effect by

insertion devices.

0

10

20

0

0.1

0.2

0 5 10 15 20 25 30

β
 [

m
] η

 [m
]

s [m]

βx

βy

ηx

( ∆ψ x
(arc), ∆ψ y

(arc) )

SD1 SD2 SD2 SD1

SF1 SF2 SF2 SF1

SASA

Figure 1: A unit cell of the 5-bend achromat lattice. The

betatron functions βx and βy and the dispersion function

ηx are shown. The arrangement of bending, quadrupole,

sextupole and octupole magnets is shown by the blue, green,

orange (solid) and red boxes, respectively.

As seen from Fig. 1, there are two "dispersion bumps" in

a cell and strong sextupole magnets, indicated as SF and SD,
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Table 1: Machine Parameters of the Present and New Ring

New Ring Present Ring

Lattice Type 5BA DB

Energy [GeV] 6 8

Circ. [m] 1435.45 1435.95

Nat. Emittance 0.157 6.6 A#1

[nmrad] 2.4 NA#2

Tune (νx, νy) (108.10, 44.58) (40.15, 18.35) A

(41.14, 19.35) NA

Nat. Chrom. (-143, -147) (-90, -41) A

(ξx, ξy) (-117, -47) NA

Beta at Straight (5.5, 2.2) (24.4, 5.8) A

(βx, βy) (31.2, 5.0) NA

Mom. Compct. 3.24e-5 1.46e-4 A

1.60e-4 NA

Ene. Spread [%] 0.093 0.109

#1A: Achromat Optics, #2NA: Non-Achromat Optics

are placed inside these arcs for correcting natural chromatic-

ities. The betatron phase difference between the two arcs

∆ψ(arc) is basically set to (2n + 1)π to cancel dominant ef-

fects of non-linear kicks due to these sextupoles. Though

the phase matching between arcs (interleaved-sextupole

scheme [3–5]) works to a certain extent, the cancellation

is not perfect and it is not easy to obtain a sufficiently large

dynamic aperture (DA). This is mainly due to a nested ar-

rangement of strong sextupoles and DA is affected by the

leakage of nonlinear kicks. In optimization procedures we

tried to suppress this effect by detuning the betatron phase

difference between the arcs [6] and optimizing the work-

ing point. Since the number of tuning knobs is limited and

chromaticity-correcting sextupoles are strong, being about

six times stronger than that for the present double-bend lat-

tice, the degree of leakage suppression is not enough for

widening DA so as to assure the stable beam operation.

In order to break this limitation, we thought up a new

correction scheme of lattice nonlinearity that we introduce

an auxiliary weak sextupole in the middle of a unit cell and

adjust its strength to further cancel the leakage kicks. If this

correction scheme works, leakage kicks from a unit cell will

be reduced and this will widen DA. We first checked the

effectiveness of this scheme by using a simple model and

found that it indeed works. We then applied it to the SPring-

8-II lattice and obtained a much larger DA than before. In

Fig. 1 the sextupole indicated as SA is the auxiliary one.

The integrated strength of SA is about 1/12 of the strongest

sextupole SD1.
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We also point out the importance of higher order effects.

For a ring with very strong sextupole magnets, the higher-

order terms in sextupole strength govern the behavior of

electrons at large oscillation amplitudes. The well-known

lowest-order ADTS formulae are no longer effective for de-

scribing tune variations at large amplitudes near a border of

DA because of the dominant contributions from the higher-

order terms. We hence developed a fourth-order formula

of ADTS for describing tune variations at large horizontal

amplitudes [7]. The formulae can predict tune variations

near a border of DA and are useful for evaluating the con-

tribution of higher order terms. In what follows we present

details of our correction scheme of using weak sextupoles

and show that the contribution of higher order terms is well

suppressed.

SUPPRESSION OF LEAKAGE KICKS BY

WEAK SEXTUPOLES

As explained in the Introduction, we propose to install an

auxiliary weak sextupole in the middle of a unit cell for sup-

pressing lattice nonlinearity caused by the leakage of non-

linear kicks by strong sextupoles. To check the effectiveness

of this scheme, we first apply it to a toy model.

Calculations with Toy Model

The purpose of this section is to check whether or not the

weak sextupole SA can control the higher order terms by

leakge kicks due to chromaticity-correcting sextupoles. For

this purpose, we use a simple model as shown in Fig. 2 to ex-

tract the nature of a cancellation mechanism. In this model

we assume the following: (i) Two families of sextupoles SF

and SD are used for chromaticity correction to simplify the

nested structure. (ii) Linear optics parameters at sextupoles

are not essential for the present purpose and we assume that

βx=5m and αx=0 at all sextupole positions and the tune dif-

ference is set to detuned values of νA=0.025 and νB=0.67,

which represent an example case of the SPring-8-II lattice.

(iii) The vertical oscillation amplitude is small and we per-

form one-dimensional calculations in the horizontal direc-

tion.
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Figure 2: A toy mode for checking the weak-sextupole cor-

rection scheme. The Λi = B
′′

L/(Bρ)/2 is the sextupole

strength.

To determine the strength of sextupoles Λi we re-

quire that the lowest order coefficient of ADTS vanishes

(∂νx/∂ Jx=0) and the local horizontal chromaticity in the

arc is fixed under the assumption that the dispersion func-

tion takes the same value at SF and SD (Λ1 + Λ2 =const.).

With these constraints the strength of SF (Λ1) and SD (Λ2)

are uniquely determined, once the strength of SA (Λ3) is

given. Figure 3 shows the strength of sextupoles thus deter-

mined. By using this mode, we made tracking calculations

to obtain ADTS and the Poincaré map in the horizontal di-

rection. Results are shown in Fig. 4 for typical three cases

of Λ3=0,±4 m−2.
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Figure 3: The sextupole strength Λ1 and Λ2 determined for

a given value of Λ3.
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Figure 4: ADTS (left) and the Poincaré map (right) calcu-

lated for a toy model. Markers represent tracking simula-

tion results and red solid curves are analytic calculations

by using perturbation formulae. In the ADTS figures (left)

dashed curves are for the lowest order perturbation and solid

curves are for the fourth order perturbation. The bold red

curve in the Poincaré map (right) is just for guiding eyes,

which corresponds to the action of Jx = 8 × 10−6 m.

To analyze the tracking simulation results we also applied

higher-order ADTS formulae that we have developed up to
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fourth order in sextupole strength [7]. These formulae have

been derived by using the canonical perturbation theory [8]

and are written in the following form:

νx = νx0 + 2cxx Jx + cxy Jy + 3cxxx J
2
x + 2cxxy Jx Jy

νy = νy0 + cxy Jx + 2cyy Jy + cxxy J
2
x

These are valid when the amplitude of vertical betatron os-

cillation is smaller compared with the horizontal one. The

coefficients on the right-hand side can be calculated in an

analytic way by carrying out numerical integrals. The re-

sults are shown by red solid curves in Fig. 4. The ADTS

is shown on the left side and we can clearly see that the

suppression of only the lowest order terms (dashed curves)

is insufficient and higher order contributions (solid curves)

dominate the beam behavior near a border of stable region.

We also see that atΛ3 = −4 m−2 the ADTS is flatter than at

Λ3=0, which means that higher order terms have been sup-

pressed by introducing the weak sextupole SA. This is also

seen from the Poincaré map shown on the right side.

Application to SPring-8-II Lattice

We applied the above scheme to the SPring-8-II lattice

and introduced weak sextupoles which are indicated as SA

in Fig. 1. After optimizing the strength of SA we obtained

ADTS as shown in Fig. 5 by the red curve. For compari-

son, we also show ADTS without SA by the black dashed

curve and that after correcting only by octupoles by the blue

curve. In calculating the red curve all octupoles were turned

off and only SA was used. From this figure we see that

the range of flatness of ADTS for the case of using SA is

wider than using octupoles. This means that when SA is

used instead of octupoles, the contribution of fourth order

terms becomes smaller and the source of lattice nonlinearity

due to leakage kicks is better suppressed. Figure 6 shows

the on-momentum DA calculated at an injection point. A

high-quality beam will be injected from the XFEL linac

(SACLA) [2] at x=-2 mm and we see that the obtained DA

is wide enough for accepting the injection beams.

For beam injection we modified the structure of two

unit cells located upstream and downstream of the injec-

tion point to realize a high horizontal beta. In the previ-

ous lattice design [6] where auxiliary weak sextupoles SA

were not used, the beta value took 30m and the modifica-

tion of injection two cells broke the symmetry of the ring.

The introduction of SA has now enlarged DA and relaxed

the requirement of a beta value at an injection point from

30m to about 20m. Owing to this, the modification of injec-

tion cells could be done locally within a limited range and

the betatron phase advance over an injection cell is kept un-

changed (same as the normal cell). The betatron functions

and phase at sextupole positions are also unchanged and the

symmetry of the ring and hence the beam stability has been

improved very much.

SUMMARY

In this paper we presented a new scheme of using auxil-

iary weak sextupoles for suppressing lattice nonlinearity in
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Figure 5: Calculated ADTS for the SPring-8-II storage ring.
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Figure 6: Dynamic aperture of on-momentum electrons for

the SPring-8-II storage ring calculated at an injection point

where βx=20.1 m and βy=1.9 m. The dashed curve is for

the ideal ring without errors and solid curves are for the ring

with sextupole misalignment in the range of ±50 µm.

the so-called hybrid MBA lattice [9, 10]. With the use of

this scheme, ADTS could be made flatter and a wider DA

was obtained. We also pointed out the importance of higher

order contributions in discussing the behavior of electrons

at large horizontal amplitudes. The betatron tune near a bor-

der of DA can be described well by the fourth order pertur-

bation formulae that we developed. Our next target is to en-

large the momentum acceptance from the present value of

2% to 3% and nonlinear optimization studies are ongoing

for this.
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