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Abstract
Tabletop accelerators are highly sought after. One way of

reducing accelerator footprints is to down-scale electromag-
netic wavelengths; however, without correspondingly high
field gradients, particles will be more susceptible to phase-
slippage – especially at low energy. We investigate how
an adiabatically-tapered dielectric-lined waveguide could
maintain phase-matching between the accelerating mode
and electron bunch at moderate field strength. We describe
our analytical model, compare it with CST and implement it
into ASTRA and provide a glimpse into the beam dynamics.

INTRODUCTION
Particle accelerators have emerged as essential tools to

explore fundmental science. Particle colliders for example,
have extended our knowledge of the fundamental forces and
essentially contributed to the developement of the standard
model. More recently, the advent of light sources based
on synchrotron radiation from high-energy (GeV) electron
bunches has extended our vision to Angstrom-scale interac-
tions, allowing us to peer onto biological and chemical in-
teractions at femptosecond timescales. Electron-diffraction
imaging offers a significantly lower-energy route (∼MeV) to
observing Angstrom-scale phenomena with unprecidented
resolution.

Exploring smaller and faster processes generally requires
more energetic particle beams which has driven the develop-
ment of large-scale accelerators such as the LHC, LCLS, and
European XFEL. Modern accelerators are based on radio
frequency (RF) technology with wavelengths on O(10 cm)
and corresponding accelerating gradients O(100 MV/m).
Scaling to smaller wavelengths has its own complications.
A shorter wavelength requires a relatively short bunch (σz �

λ) to maintain reasonable energy spreads under acceleration.
Moreover, from the normalized vector potential a0 ∝ E0λ,
obtaining the same acceleration dynamics in a scaled accel-
erator requires E0 ∝ λ

−1 [1]. Realizing GV/m+ acceleration
gradients is difficult and also presents challenges such as
tight tolerances and breakdowns [2] in metallic structures.
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These limitations have motivated research into alterna-
tive acceleration techniques which fall into two general cat-
egories operating in sub-millimeter-scale regimes: beam-
driven and laser-driven accelation. Beam-driven accelera-
tion uses a high-impedance medium (e.g. dielectric lined
waveguide (DLW) or plasma) to transfer energy between two
ultrarelativistic bunches [3]. In laser-driven acceleration,
a high-power laser is used to accelerate an electron bunch
either directly (i.e. direct laser acceleration (DLA) [4, 5])
or via a medium e.g. plasmas [6, 7]. A principle limitation
to these techniques is phase-slippage where the accelerating
electron bunch velocity is not matched to the phase velocity
(vp) of the structure or plasma. In the ultrarelativistic limit
this problem is mitigated; however, acceleration at low ener-
gies has been predominatly accomplished with an ultra-high
power laser pulse in the multi-TW regime.

Here we describe a technique to abridge low-energy accel-
eration with small wavelengths and relatively small accel-
erating fields. We accomplish this with an adiabatically-
tapered DLW to maintain phase matching between the
longitudinally-dependent phase velocity of the structure and
the accelerating electron bunch. We discuss the general the-
ory of the structure, its limitations, we provide an example
with λ = 1 mm and discuss the resulting beam dynamics.

THEORY

Dielectric-lined waveguides (DLWs) have attracted inter-
est in the accelerator community for their versatility to accel-
erate, manipulate and characterize [8–13] electron beams. A
DLW is generally composed of a hollow core surrounded by
a dielectric lining with an outer metallic coating. Here we
consider a cylindrical-DLWwith inner radius a, outer radius
b and relative dielectric permittivity εr . The accelerating
(TM01) mode has the following general field solutions in
cylindrical coordinates (r, φ, z) [14]

Ez = E0I0(rk1) sin(ωt − kz z + ψ)

Er =
E0kz

k1
I1(rk1) cos(ωt − kz z + ψ)

Hφ =
ωε0E0

k1
I1(rk1) cos(ωt − kz z + ψ),

(1)
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where k1 = ω
√

1
v2
p
− 1

c2 , k2 = ω
√
εr
c2 −

1
v2
p
, and kz = ω

vp
.

Here I is the modified Bessel function of the first kind, E0
is the lontiudinal field amplitude, k1 and k2 are the radial
components of the wavenumber k in the vacuum core and
dielectric respectively, kz is the longitudinal wavenumber,
vp is the phase velocity, ω is the angular frequency and ψ
is a phase constant. Solutions to the characteristic equation
depend on the DLW structure parameters (a, b, εr ) and yield
propagating modes for (ω, kz).
We make the following ansatz for the fields in a tapered

waveguide

Ez = E0I0(rk1) sin(ωt −
∫ z

0
dzkz + ψ)

Er =
E0kz

k1
I1(rk1) cos(ωt −

∫ z

0
dzkz + ψ)

Hφ =
E0ωε0

k1
I1(rk1) cos(ωt −

∫ z

0
dzkz + ψ),

(2)

where E0, k1 and kz now depend on z.
Checking with Maxwell’s equations,

∂

∂z
Ez = −

1
r
∂

∂r
(rEr ),

∂

∂t
Ez

c2 = −
1
r
∂

∂r
(rBφ),

(3)

the ansatz is satisfied and adiabatic for the following con-
ditions

����rk ′1I1(k1r)

kz I0(k1r)

���� =
������� v′p√

1 − v2
p

r
I1(k1r)
I0(k1r)

������� � 1,

���� E ′0
E0kz

���� = ����E ′0vpE0ω

���� � 1.

(4)

To include particle acceleration, we solve the coupled
differential equations

∂z
∂t
= βc

∂β

∂t
=

eE0

γ3mc
sin(ωt −

∫ z

0
kzdz + φ).

(5)

We developed a C++ code to iteratively solve the disper-
sion relations and field equations; for a given inner radius a,
we solve the system of equations to obtain E0 and the appro-
priate taper thickness δ at a particular vp; now however, vp
corresponds to the normalized velocity of the accelerating
particle β. We implemented our ansatz field equations into
astra [15]. In the following section we discuss simulation
results for a 300 GHz, 100 MV/m structure.

λ=1 mm, E0=100 MV/m EXAMPLE
We now consider an example based on a 300 GHz

(λ=1 mm) driving field in a structure with constant inner ra-
dius a = 0.5 mm and varying b made of Quartz (εr = 4.41)
– limiting vp > c/

√
εr ∼ .48c. We consider a bunch with

initial energy of Ei=205 keV, correpsonding to β = 0.7.

Figure 1: The tapered structure in our example for a fixed
inner radius a=0.5 mm (blue) and a tapered Quartz (εr =
4.41) dielectric thickness with outer radius (shown red). The
taper is matched for an initial energy of Ei=205 keV with
a maximum accelerating field of E0=100 MV/m. We show
the comparison with CST-MWS (bottom) for completeness.

The structure (shown in Fig. 1(top)) is matched to
E0=100MV/m (note E0=100MV/m for vp = c (e.g. k1 = 0),
at z = 0 where vp = 0.7c, E0 ∼ 20 MV/m). From Eq. 4 the
condition for r=100 µm at z=0 gives 0.0017 and approaches
10−7 toward the end fo the structure. For completeness we
compared our analytical model with CST MWS [16] (see
Fig. 1(bottom)) for the first 2 cm of the structure where the
majority of the taper occurs; discrepancies arise at the en-
trance and exit of the structure which are excluded in our
theoretical model.

We can gain some insights into the longitudinal dynamics
with a single particle; illustrated in Fig. 2(top), the final
energy is plotted as a function of the injection phase for
various accelerating fields; larger gradients enable a larger
acceptance while no efficient acceleration is possible for
lower gradients. Fig. 2(bottom) shows the end phase as a
function of starting phase, a plateau in the curve implies
the end phase is within a certain interval independent of the
initial phase, i.e. the bunch is compressed.

Finally we look at the acceleration dynamics of a 100 fC
spherical electron bunch radius σr=10 µm with zero emit-
tance and energy spread. We used a 1.2 T magnetic field
to counter the defocussing forces. We scan over the in-
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Figure 2: A phase scan (top) illustrating the final energy
as a function of initial phase for various accelerating fields
for a structure matched to 100 MV/m. The larger accelerat-
ing gradients have a larger dynamical range of acceleration
trajectories; leading to larger acceptances for initial phases.
Bottom figure shows the end phase as a function of ini-
tial phase for various accelerating gradients for a structure
matched to 100 MV/m. Plateaus e.g. semi-constant end
phases suggests the bunch is compressed. No compression
or decompression requires a linear curve with derivative 1.
Along the dashed line the end phase is equal to the start
phase, i.e., the phase stays constant for only a small interval
around 0◦ in the 100 MV/m curve.

jection phase φ and maximum accelerating field E0 (see
Fig. 3); while the maximum energy of the structure is fixed
by vp(z) of the structure, other beam parameters e.g. σz ,
ε⊥, σE are quite versatile over (E0, φ). For example we
find that for (E0, φ)=(110MV/m, 18◦) yields final parame-
ters σz=1.2 µm, ε⊥=0.15 π mm mrad, σE=60 keV, or with
(E0, φ)=(108MV/m, 24◦) yields final prameters σz=3 µm,
ε⊥=0.07 π mm mrad, σE=0.11 keV.

CONCLUSION
We have described a new method of accelerating low-

energy particles by maintaing phase-matching between an
accelerating bunch and the phase of the longitudinal electric
field with an adiabatically tapered dielectric lined waveguide.
We developed an analytical model which was validated with
Maxwell’s equations and CST MWS. The anaytical model
was implemented into astra and we provide a beam dynam-

ics example. Our future work will look at other e.g. slab
structures; and optimizations. We also investigate ways to
reduce the required magnetic field strengths.
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Figure 3: Scan results over (E0, φ) for a structure matched
for 100 MV/m with λ=1 mm.
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