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Abstract 
Tracy accelerator simulation library [1] was originally 

developed for the Advanced Light Source (ALS) design 
studies [2] at LBNL in the late 1980’s. It was originally 
written in Pascal [3], later ported to C++, and then to C# 
[4]. It is still actively updated and currently used by the 
ALS Upgrade Project (ALS-U) [5] to design and to opti-
mize the lattice. Recently, it has been reconstructed to 
provide ease of use and flexibility by leveraging the 
quickly growing Python language. This paper describes 
our effort of porting it to Jupyter Notebook[6] on our 
institutional High-Performance Computing (HPC) clus-
ters [7]. 

PERFORMANCE AND PRODUCTIVITY 
The most CPU-intensive part of the ALS-U design 

study is the optimization in the high-dimensional parame-
ter space using the multi-objective genetic algorithm 
(MOGA)[8] on HPC clusters by using Tracy++ [9]. It is 
critical to have natively compiled code to maximize the 
runtime performance. But this approach may not be user-
friendly enough since many scientists are not comfortable 
to deal with the complex tool-chain and software depend-
encies to compile the code. Python made this easy by 
providing an interactive environment and excellent scien-
tific library support. By making C++ and Python work 
together properly, we can get a balance of performance 
and productivity. 

Productivity will be further increased when Tracy++ is 
used in the Jupyter Notebook, an interactive and compu-
tational environment which has been well recognized in 
scientific and engineering fields. Other advantages in-
clude the contextual readability, reproducibility, and mo-
bility. 

For example, astropy [10] for astronomy is already a 
part of the Anaconda distribution [11]. There are also 
Jupyter Notebooks available for accelerator physics [12].  

Our effort is to port Tracy++ API to Python in an auto-
mated environment, using Jupyter Notebook running on 
HPC clusters that hosts a Jupyter HUB [13].  

TRACY++ FOR PYTHON 
We started with porting the Tracy API to Python, then 

migrated it to the HPC cluster.  

Wrapper Creation 
Tracy++ for Python is a Python module that wraps the 

Tracy++ library. Among multiple options, we chose to use 

SWIG [14] which is a tool to automate the wrapper gen-
eration of C/C++ libraries for various programming lan-
guages including Python.  

The early version of Tracy++ uses C++ class inher-
itance intensively. Consequently, SWIG tries to wrap all 
the Tracy++ entries. However, there are C++ features that 
are not compatible with Python, overriding C++ opera-
tors, function signatures, virtual functions, and default 
values for function parameters for example.  

Some of these features are removed when Tracy was 
cleaned up a few years ago [15]. Although it was to im-
prove performance, the effort of porting Tracy++ to Py-
thon also started. SWIG could not wrap the full API of 
Tracy++ due to the complexity. However, it worked fine 
with the trimmed version of it. 

This time, the full version of Tracy++ was reconfigured 
to enhance the usability for Python. One of the notable 
changes is to control the visibility from Python properly. 
Differential Algebra [16] is one of such examples. Alt-
hough it plays a significant role in the 6-dim particle 
propagation with radiation loss, there is no need to use it 
directly from Python. Therefore, it is not passed to SWIG. 
In the case of default values, both C++ and Python sup-
port them but differently. Therefore, after removing them 
in C++, Python can revive some of them if needed in the 
helper module. 

Tracy development has been on Windows in Visual 
Studio where multiple projects are grouped into a unit 
called solution. It includes Tracy++ and related libraries, 
various client applications in C++ and the SWIG wrapper 
project. When the library is updated, the entire solution 
including the wrapper is also updated.  

Helper Module 
The wrapper creation has been entirely automated by 

using SWIG. However, there are some repetitive patterns 
required on the Python side. They are moved to a Python 
helper module to provide the following functions for 
seamless access from Python. 

• Various listing and plotting functions as C++ layer 
cannot write nor plot to the Jupyter Notebook output 
cells. 

• The accelerator lattice definition utilities to use Py-
thon lists efficiently. 

• Conversion of corresponding numerical data types 
between C++ and Python NumPy [17]. 

• Default values of the function parameters. Some of 
them are the revival of those removed in the C++ 
layer. 

 ___________________________________________  
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Virtual Functions 
A C++ class uses virtual methods so that the base class 

can use the algorithm defined in its derived function. 
However, if it’s derived class is in Python, this trick stops 
working. This happens when a storage ring lattice is de-
fined as a new Python class derived from the Ring class 
in C++.  

The lattice is defined in Python and set to the data 
member of the base class.  The derived class may need to 
define new methods for customized operations. Unfortu-
nately, the base class cannot see such Python functions 
even by using the virtual methods. The call-back mecha-
nism may solve this issue. However, it is not used because 
of its complexity. Such new operations have to be done in 
Python. As Tracy++ provides a rich set of building 
blocks, this is usually acceptable. An exception is the 
evaluation function of the genetic algorithm calculations 
done in C++. It must be supplied as a C++ function. 
When the evaluation algorithm reaches to the level of 
parameterization, it can be defined in Python as data. As 
such calculations are never interactive, this solution is 
acceptable. 

Parallel Processing 
Tracy++ has been used with MPI on the HPC clusters 

for MOGA optimizations. This parallelization happens 
outside of Tracy++. Therefore, it is out of the scope of 
this paper, although Python can play a flexible role as its 
job control language. 

On the other hand, Tracy++ uses OpenMP [18] inter-
nally to utilize multiple CPU cores on a single PC in 
parallel to calculate dynamic apertures and frequency 
maps. As OpenMP is not visible from Python, these rou-
tines are wrapped as normal functions. 

Data Access and Management 
Python can access public data members of a C++ class. 

However, they reside in the proxy in Python. The get and 
set functions. 

Data transfer becomes an issue if its size is too large 
and memory management is not automated. It requires 
extra caution to pass a dynamically allocated object over 
the language boundary.  The generic containers of C++ 
reduce this issue. Besides, Tracy++ requires a data con-
tainer created in Python, and passed to C++ to receive the 
output result with a significant amount of data. 

At the same time, the data transfer over the language 
boundary should be minimized. A good example is the 
dynamic aperture and frequency map calculations [19]. It 
has been a common practice to pair their results. A new 
function was created to do this effectively in parallel and 
pass the result concisely to Python. 

Simple genetic algorithm calculation is supported in 
Tracy++ by using OpenMP. We often use it to replace 
wide-range parameter scan in the high-dimensional pa-
rameter space. It performs very shallow optimization to 
disqualify unusable lattices, and not to keep these candi-
dates for the best solution. Due to a large amount of out-
put data, the result is saved to a file and later processed 

separately by using Pandas [20] and other statistical pack-
ages in Python. The rich availability of various packages 
in the Notebook makes an evaluation of output data quite 
efficient. 

Parallel processing at the Python level is not included 
yet.  

Portability to Linux 
Tracy++ for Python is always updated on Windows as 

already explained. The port to Linux starts by updating 
the full Tracy++ system including the SWIG project on a 
local Linux box.  This process is straightforward and 
confirmed on several Linux distributions of Ubuntu and 
RedHat families including Mint, CentOS and Scientific 
Linux. 

JUPYTER HUB ON THE CLUSTER 
LBNL Lawrencium cluster [7] is a general purpose 

High-Performance Computational Cluster built for scien-
tific computing. The Lawrencium infrastructure recently 
provided the Jupyter Notebook service which has a user 
friendly, graphical interface.  

Tracy++ for Python is migrated to the cluster in three 
phases. The first phase is to move the whole development 
to the cluster environment. There, a user can choose to 
work either from a web console which is provided by 
Jupyter-Hub, or a traditional terminal via ssh. This signif-
icantly reduces the entrance barrier for users who are not 
familiar with Linux or a cluster environment.  

The second phase is to integrate the parallel capability 
of the cluster into the Notebook. This requires fine tuning 
of the build process on the system side. We are currently 
in this phase. 

The third phase is to introduce a distributed computing 
at the Python level. We use the package, “MPI for Py-
thon” [21], to give the complete scalability to the high-
level routines in Python accessing Tracy++. This package 
is also a part of Anaconda and is compatible with our 
work. Our future effort will be with MPI for Python.  

 
CONCLUSION 

The combination of C++ and Python worked success-
fully with Tracy++. Generation of the wrapper for Tra-
cy++ for Python has been automated by using on SWIG. 
The wrapper is always synced and updated on Windows. 
Porting to a Linux PC is straightforward by using shell 
scripts.  

It works in Jupyter Notebook smoothly with the variety 
of other Python packages for plotting, data analysis, and 
symbolic calculations. 

It was very timely that the LBNL Lawrencium HPC 
cluster started offering the Jupyter service when there is a 
need for more computing power using Python.  Migration 
to the Lawrencium HPC cluster turned out to be simple 
and straightforward.  Also, environment software modules 
are used to manage users’ runtime environments dynami-
cally on Lawrencium, rather than local software manage-
ment on the local PC.   
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Distributed computing on the HPC cluster in Python is 
possible by using MPI for Python. Tracy++ for Python is 
in the process of adopting it. As the CPU-intensive rou-
tines are all in C++, degradation should not be an issue 
compared to the benefit.  

This approach is the right direction for the future accel-
erator design studies. Future C++ development will con-
tinue to use Jupyter HUB on the HPC cluster in mind. 
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