
HÉNON-HEILES SINGLE PARTICLE DYNAMICS AT IOTA 

S. A. Antipov, University of Chicago, Chicago, USA  

S. Nagaitsev, Fermilab, Batavia, USA

Abstract 
A Hénon­Heiles system is a simple, classical nonlinear 

Hamiltonian system offering a wide range of particle dy­
namics from regular orbits to resonant behavior to chaotic 
trajectories. Initially proposed to describe the motion of 
stars around a galactic center, it remains a vivid topic in 
Dynamics and Mathematical Physics since its discovery in 
1964. Although the system and its modifications have been 
extensively studied numerically, its dynamics has never 
been observed in a controlled experiment. In this report we 
show that it is possible to create the Hénon­Heiles Hamil­
tonian using sextupoles in a realistic accelerator lattice. We 
propose a special sextupole channel to create the desired 
potential at the IOTA ring and study the 3D single particle 
dynamics by frequency map analysis and Poincare cross 
sections. The proposed experiment would allow real world 
testing of regular and chaotic motion with a controlled 
strength of the nonlinearity. 

HÉNON-HEILES SYSTEM 

In 1964, Michel Hénon and Carl Heiles [1] investigated 

the existence of the third isolating integral of galactic mo-

tion. Only two isolating integrals had been known – the to-

tal energy and the angular momentum. Nevertheless, ob-

servations of stars near the Sun and numerical computa-

tions of orbits in some cases behaved as if they had three 

isolating integrals. Through numerical computation the re-

searchers searched for the third integral of motion in a 

model system. Not holding too hard to the astronomical 

meaning of the problem, the researchers only demanded 

that the potential they investigated was axially symmetric 

and the motion was confined to a plane. They found a 

model potential, which is analytically simple so that the or-

bits could be calculated rather easily but is still complicated 

enough so that the types of orbits are non-trivial. In Carte-

sian (x,y) coordinates this potential is written as  

 2 2 2 31 1
( , ) ( )

2 3
V x y x y x y y    . (1)  

It can be seen in Eq. (1) that the Hénon-Heiles potential is 

in fact composed of two harmonic oscillators coupled by a 

3rd order term. The corresponding Hamiltonian is  

 2 2 2 2 2 31 1
( )

2 3
x yH p p x y x y y E         (2) 

where px and py are the momenta conjugate to x and y, re-

spectively, and E > 0 is the value of the Hamiltonian, which 

is conserved. The potential (1) has a finite escape energy 

of Eesc = 1/6. For values of energy E < Eesc, the equipoten-

tial curves of the system are closed and the motion is 

bounded. For E > Eesc, the equipotential curves open and 

three exit channels appear, through which the test particles 

may escape to infinity (Fig. 1). 

 

 

Figure 1: Equipotential lines of the Hénon-Heiles system 

(color). The motion is bounded for small initial amplitudes 

inside the separatrices E = 1/6 (black dashed). 

Figure 2 depicts the Poincare maps of this system. For 
low energies (E = 1/24) the mapping plane is covered with 
the intersections of phase­space tori and the motion is reg­
ular. Above E = 1/9 most tori are destroyed and the map 
shows the coexistence of regular and irregular motion. 
Mostly irregular motion is observed close to the escape en­
ergy Eesc = 1/6. 

The Hénon-Heiles model system showed that the galac-

tic motion is integrable only for a limited set of initial con-

ditions. Over the years, a lot of computational and analyti-

cal research has been devoted the system, but no experi-

mental observations of its dynamics has been made so far. 

 

Figure 2: Poincare cross sections of the plane x = 0 for three values of parameter E: regular motion at E = 1/24, mix of 

regular and irregular motion at E = 1/8, and chaotic motion at E = 1/6. The particles are placed with the initial y = 0. The 

dots, which appear at random for E = 1/8 and E = 1/6, are generated by a single particle trajectory [1].
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ACCELERATOR IMPLEMENTATION 

It is possible to create the potential (1) in a particle ac­
celerator with the use of normal sextupole magnets. To 
achieve the time­independent Hamiltonial (2) one has to 
follow the approach, described in [2].  

In an accelerator, the equations of motion in a transverse 

plane can be written as 

 
'' ( ) 0

( ) ( ),

z

z z

z K s z

K s C K s

 
    (3) 

where z stands for one of the two transverse coordinates x 

or y, s is the longitudinal coordinate, and K(s) is the focus-

ing strength, and C is the accelerator circumference. Here 

we assume that the coupling between the x and y degrees 

of freedom is negligible. 

In the normalized phase-space coordinates: 

 

,

/ ( )

( ) '( ) / 2 ( )

N z

z N z z

z z s

p p s s z s


  


    (4) 

the initial time-dependent Hamiltonian, associated with 

Eq. (3), becomes time-independent in each plane: 

 2 2

, ,

1
( )

2
z N z N NH p z    (5) 

The new “time” is the betatron phase advance, defined as  

 / ( )z zd ds s    (6) 

and, in general, is different for the x and y planes. Because 
of that one cannot write a time­independent Hamiltonian 
of the 4D transverse motion if the beta­functions in x and y 
are different. 

Now let us consider a straight section of an accelerator 

with (s)x y     (the “time” flows equally fast in the 
two transverse planes) and a potential V, such that 

β(s)V(x,y;s) is independent of the new time μ. The corre-

sponding normalized Hamiltonian 

 2 2

,

,

1
( ) ( , ; )

2
N z N N N N

z x y

H p z V x y s  


     (7)  

is autonomous. To obtain the Hénon-Heiles Hamiltonian 

(2) we need the potential to be cubic in x and y: 

 
2 3

5/2

1
( , ; ) ( )
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V x y s xy y

s


  , (8) 

where α is the strength parameter. This potential can be 

created by a set of sextupoles, powered in such a way, that 

their strengths are proportional to β-5/2. The rest of the ring 

outside this section should have a linear transfer matrix of 

a thin axially symmetric lens with the phase advance of a 

multiple of 2π (Fig. 3). 

 
Figure 3: The ring outside of the sextupole channel section 

has a transfer matrix of a thin axially symmetric lens [2]. 

EXPERIMENT AT IOTA 

A proof of principle experiment can be performed at the 
Integrable Optics Test Accelerator (IOTA) at Fermilab. 
IOTA is an electron storage ring, featuring a flexible linear 
lattice and a precise control of optics functions at the level 
of 10­3. The ring has two 1.8 m long straight sections, spe­
cifically designed for the installation of nonlinear magnets, 
and the rest of the ring can be tuned to have a linear transfer 
matrix of a thin axially symmetric lens [3].  

The proposed experiment will use the optics configura­
tion with one nonlinear insert (Table 1). 18 sextupoles of 
the existing IOTA design can be installed in this section to 
create the potential (8) either equidistantly or with an equal 
phase advance between them (Fig. 4).  

 

 

Figure 4: Installing the magnets with the equal phase ad-

vance between them leads to a lower variation of field 

strength than the equal spacing. Plotted is the integrated 

strength of the sextupoles as a function of the distance from 

the center of the channel. Total length 1.8 m, total phase 

advance – 0.3; a half of the channel is shown. 

Poincare Cross Sections 
IOTA will operate with a one-bunch pencil electron 

beam to test the dynamics in the ring. Shortly after the in-

jection from the FAST linac, the transverse size of the 

bunch will shrink to its equilibrium value of ~ 0.1 mm 

thanks to the synchrotron radiation. IOTA’s fast horizontal 
and vertical stripline kickers allow placing the electron 
bunch at an arbitrary point in the 4D transverse phase 
space. After the initial kick the evolution of particle trajec-

tories can be studied using Poincare mapping technique. To 

create Poincare maps one can measure position of particles 

with 20 BPMs, distributed around the ring. The turn-by-

turn position resolution of the order of ~ 1 μm should be 

attainable when using all the BPMs in the ring. Multi-turn 

data from the BMPs can be combined to reconstruct the 

Poincare map of the system using a Taylor series approach, 

proposed by Wang and Irvin [4]. 

To check whether the resolution of the BPMs will be suf-

ficient to distinguish between the different types of orbits 

in the presence of field and lattice errors we performed a 

4D tracking for 106 revolutions. For this study the ring out-

side of the section replaced with a linear transfer matrix. In 

the ideal case, with no errors, the one can clearly recon-

struct the pictures of Poincare cross sections of the Hénon-

Heiles system. With lattice errors at the level of 10-3 in be-

tatron tune (design target for IOTA) and sextupole field 

quality of 5% some particles at high oscillation amplitudes 
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are lost. Nevertheless, all trajectories remain bounded for 

105 turns, allowing to clearly distinguish between the types 

of orbits (Fig. 5).  

Figure 5: Poincare cross-sections of the plane x = 0 for the 

sextupole channel. Left – ideal case with no errors; right –
with a random errors in magnet strength of 0.05 and the 

ring’s phase advance of 10-3. The particles are placed with 

the initial y = 0. 

Particle Tracking and Frequency Map Analysis 

Because the simplified Hamiltonian (7) does not take 
into account the longitudinal degree of freedom, we per­
formed an accurate numerical tracking to check how it ap­
plies to a real accelerator. Our numerical model of the 
IOTA ring included dipoles with fringe fields, quadrupoles, 
and an RF cavity; the nonlinear potential (8) was created 
by a set of 10­cm­long hard­edge sextupoles. We simulated 
3D particle dynamics in the accelerator with betatron and 
synchrotron motion coupled through dispersion and chro­
maticity using Lifetrac particle tracking code [5]. We used 
two methods to analyse the tracking results: dynamic aper­
ture plots to find the region of the stable and motion, and 
Frequency Map Analysis [6] (FMA) to distinguish between 
regular and irregular motion. 

Table 1: Main Parameters of IOTA Ring, Setup with One 

Nonlinear Insert [3] 

Electron energy 150 MeV 

Number of bunches, particles 1, 109 

Ring circumference 40 m 

Synchrotron radiation damping time 1 s 

Equilibrium emittance, x & y, rms 0.04 mm-mrad 

Betatron tunes, x & y 5.3, 5.3 

Natural chromaticities, x & y -11.4, -7.1 

Synchrotron tune 45.3 10
Harmonic number and voltage 4, 1 kV 

Energy spread, rms 41.35 10
Bunch length, rms 10.8 cm 

As expected, at low amplitudes the particles executed 
regular motion. At higher amplitudes several resonant lines 
appear in the FMA. Some particles with the highest ampli­
tudes escaped aperture probably due to the so­called Ar­
nold diffusion [7]. The resulting aperture, measured on a 

time scale, comparable with the synchrotron damping time 
is of the ring is be about 70% of that of the ideal Hénon­
Heiles system. The stable region encompasses areas of both
regular, resonant, and chaotic motion (Fig. 6).

Figure 6: The dynamic aperture of the accelerator (light 

blue line) is about 70% of that of the ideal 2D system (black 

dashed line). Color denotes the FMA amplitude. Sextupole 

strength α = 800 m-1/2.The aperture is calculated using the 

particle tracking for 105 turns; FMA – 213 turns. 

CONCLUSION 
Hénon­Heiles system is a classic example of a time­

independent Hamiltonian system that is both computationally 
simple and generic in its basic properties. The dynamics in 
the system is important for the research in the active field 
of nonlinear Hamiltonian systems.

We have shown that the Hénon­Heiles potential can be 
created and studied experimentally in a realistic accelerator 
setup, in particular, using a channel of 18 sextupole 
magnets in the IOTA ring. The required tolerances of 5% 
in sextupole field strength and 10­3 can be achieved in 
the IOTA. 6D tracking shows that under these tolerances 
the electron beam will remain stable for at least 105

revolutions. This will allow observing the coexistence of 
regular and irregular motion in the system. The resolution 
of the IOTA’s 20 BPMs is sufficient to distinguish between 
different trajectories and reconstruct the Poincare cross 
sections of the phase scape. 

Compared to the previous attempts to study nonlinear 
beam dynamics [8,9], the proposed approach allows 
precisely controlling the strength of the nonlinearity in the 
system. A similar measurement can also be performed at 
IOTA with an octupole channel, which is being built to show 
high achievable tune spread in a nonlinear focusing lattice 
[10]. 
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