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Abstract

A number of codes are available to simulate longitudinal

dynamics in synchrotrons. Some established ones include

TIBETAN, LONG1D, ESME and ORBIT. While they em-

body a wealth of accumulated wisdom and experience, most

of these codes were written decades ago and to some extent

they reflect the constraints of their time. As a result, there

is an interest for updated tools taking better advantage of

modern software and hardware capabilities. At Fermilab,

the PIP-II project has provided the impetus for development

of such a tool. In this contribution, we discuss design deci-

sions and code architecture. A selection of test cases based

on an initial prototype are also presented.

INTRODUCTION

The longitudinal codes ESME [1], LONG1D [2], and

TIBETAN [3] were developed in the late 1980s and early

1990s. They were implemented in fortran, and rely on the

namelist mechanism for data input. ORBIT is somewhat

more recent. It is principally a code for full 6D tracking with

space charge that offers a limited longitudinal only mode.

While some of the codes are still in use (e.g. ESME [4]), they

are at best minimally supported and hard to maintain.

Recently, to respond to the needs of its LHC injector

chain upgrade, CERN invested efforts in a new code (BLOND)

which looks promising [5]. The implementation is mostly

interpreted python with some computationally intensive

functions in C++. The motivation for our own efforts was

provided by the PIP-II project at FNAL. PIP-II involves re-

placing the existing warm 400 MeV linac with a new 800

MeV superconducting version which would serve as a plat-

form for future improvements. A main goal is to deliver

high intensity proton beams to a new generation of neutrino

experiments. To do so, PIP-II requires various upgrades

and improvements to the existing chain of Booster, Recycler

and Main Injector synchrotrons. Some limitations in these

machines are linked to longitudinal dynamics issues that

need to be well-understood. In that spirit, after writing some

narrowly focused code [6], it was decided that it would be

beneficial to develop a more generic tool for longitudinal

dynamics that we can fully control and adapt to our specific

needs.
FEATURES

A considerable amount of experience and knowledge is

encoded in the feature sets of the codes mentioned in the

introduction. Much can be learned from them and they

provide a template to define the functionality for a new code.

ESME, for example, evolved over more than three decades and

represents many man-years of work. A new implementation
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of an equivalent set of features is obviously a long term

proposition. The initial priority is to implement the basic

functionality which includes:

Magnetic ramp definition: provide a limited selection of

predefined ramps and a provision for a user-defined ramp.

RF systems: single and multiple harmonic rf. Support for

two simultaneous rf systems operating at different frequen-

cies ( required for for slip stacking)

Particle distributions: limited selection of predefined dis-

tributions. Ability to import and export distributions.

Impedance: predefined impedance models for resistive

wall, pure inductive wall, "laminated" wall and low-Q broad-

band impedance. Provide a mechanism for user-defined

impedance.

Narrow-band resonances : based on simple RLC model

with wakes computed in the time domain.

Space charge: conventional space charge model based on

analytical expression. Computed either in the frequency or

the time domain.

gamma-t: control over phase-jump timing. Allow for non-

linear and time-dependent momentum compaction factor

(time-dependence is used to simulate a pulsed quadrupole

γt -jump).

Monitors: losses, emittance, moments through the acceler-

ation cycle. Line density for bunch shape evolution.

Basic beam feedback: Phase and radial loops. Dampers

for supression of dipole and quadrupole oscillations.

IMPLEMENTATION CONSIDERATIONS

Implementation language(s) The code is primarily imple-

mented in C++. This seems to be the best way to take advan-

tage of the hardware capabilities; furthermore the language

is popular, well-established and standardized. A subset of

the functionality may be made available as python modules.

Parallelism A typical modern desktop supports 4 to 12

CPU cores and up to 128 Gb of memory. This makes it

possible to simulate the complete acceleration cycle of a

rapid cycling synchrotron with 105 macroparticles and space

charge on a scale of minutes. Compiler support for OpenMP

provides a straighforward and portable way to take advan-

tage of multiple cores. A variety of parallelized opensource

libraries (e.g. for FFTs) are also available and can be lever-

aged.

Interactive mode The simulation code is meant to be pri-

marily used interactively. The ability to set up a problem

quickly coupled with immediate user feedback makes work

more efficient and promotes experimentation.

Batch mode The ability to run simulations in batch (con-

sole) mode remain useful and important for certain classes of

problems. Such problems include for example, a parametric

optimization or a high-statistics study of microwave instabil-

ity after transition. The batch mode implies that simulations
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can be fully specified in a text file using a descriptive input

syntax.

Plugins It should be possible for a user to extend or modify

certain features through a plugin mechanism. Plugins are

separately compiled modules that get dynamically loaded

at runtime. They must adhere to a specific interface but

otherwise may contain arbitrary code.

BASIC ALGORITHM

Differential Equations

Textbooks usually provide a simplified derivation of the

longitudinal dynamics equations. A few subtleties tend to

be overlooked and are worth mentioning.

Assuming one or more gaps providing a net periodic volt-

age V , the evolution –with respect to the synchronous par-

ticle – of a particle dynamical state is determined by the

equations [7]

d

dt

(
ΔE

Ωs(t)

)
=

e

2π
[V(φ(t)) − V(φs(t))] (1)

dφ

dt
= −h(Ω(t) −Ωs(t)) (2)

ΔE is the energy deviation, h is the rf harmonic number, Ω

is the angular circulation frequency and φ is the rf phase;

the subscript s denotes quantities associated with the syn-

chronous (reference) particle. The equations assume that

changes in dynamical state are slow with respect to the cir-

culation period. They also assume that the synchronous

particle remains on a fixed trajectory throughout the accel-

eration cycle, as the guiding magnetic field is continuously

ramped. Note in passing that in an actual machine, while

the rf cavities deliver energy in discrete bursts, ramping is

truly continuous.

A noticeable feature of equation (1) is the presence of

Ωs inside the differentiation operator. Technically, this is

because ΔE/Ωs(t) and φ are the conjugate variables. Ex-

panding the derivative and rearranging we get

Δ �E =
e

2π
Ωs[V(φ(t)) − V(φs(t))] + ΔE

�Ωs

Ωs

(3)

Equation (3) suggests that the increase in particle energy

is not exclusively due to the cavity(ies) – the first term on

the right hand side. The second term actually accounts for

the betratron acceleration, or more precisely the difference

in betraton acceleration with respect to that experienced by

the synchronous particle. The betatron acceleration arises

from the time varying magnetic flux enclosed by the particle

path. In a synchrotron, the synchronous orbit circumference

is fixed and
�Ωs

Ωs

=

�βs

βs
(4)

which indicates that at each turn, as a fraction of the energy

gained from the cavity(ies), the energy due to betratron ac-

celeration is equal to the relative change in velocity. While

the betatron contribution is small, ignoring it violates sym-

plecticity. For a detailed discussion, see [8] and [9].

Map

For numerical simulation purposes, a spatial map is

needed. A suitable one is obtained by integrating the system

(1-2) over a complete turn i.e. over a period Ts,n. One then

gets at step n

ΔEn

βs,n
=

ΔEn−1

βs,n−1

+ e
[V(φn) − V(φs)]

βs,n
(5)

Θn = Θn−1 + 2π
ΔΩn

Ωs,n

(6)

where Θ is the azimuthal position along the synchronous

trajectory and φ = −hΘ. The frequency slippage ΔΩn is

caused by differences in velocity and path length with respect

to the synchronous particle; both depend on the relative

momentum deviation and one has

ΔΩ

Ωs

=

Δβ/βs − ΔC/Cs

1 + ΔC/Cs

= η(
Δp

ps
)
Δp

ps
(7)

where Δp is the momentum deviation and C is the path

length (circumference). Both ΔC/Cs and Δβ/βs may be

expanded as power series in Δp/ps . The velocity deviation

expansion is obtained analytically; the coefficients of the

orbit length expansion (usually refered to as αn) depend on

the dispersion and can be computed using a separate optics

code. At first order, (7) yields the familiar expression for the

slip factor η(Δp/p) = η0 + η1Δp/ps + · · ·

η0 =
1

γ2
s

− α1 (8)

The higher orders terms become important at transition (η0 =

0).

Collective Effects

Collective effects are incorporated by adding localized

voltage kicks each representing the integrated effect of the

collective fields. At fixed time, collective fields depend ex-

clusively on the spatial distribution; the latter is obtained by

projecting the phase space distribution. The collective volt-

age may be computed either in the time or frequency domain.

In the frequency domain, the calculation assumes that the

ring distribution is quasi-periodic; the voltage is obtained

by multiplying the impedance by the periodic extension of

the longitudinal distribution and represents a steady-state

solution. If the fields persist for more than a turn, it becomes

necessary to store the response over multiple turns and this

introduces a significant amount of complexity. Fortunately,

the most relevant practical case of persistent wake is that

of narrow-band resonant modes in rf cavities. A narrow

resonance can be modeled by a simple passive RLC circuit.

The impulse response of the circuit (a damped sinusoid) can

be expressed in terms two variables, the capacitor voltage

and the inductor current. These variables completely char-

acterize both the current state and the future response of

the circuit; therefore at turn n the response is the transient

response due to the excitation during the current turn plus
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the response associated with the decaying fields from the

state at n−1. In practical terms this implies that two floating

point numbers are sufficient to account for all past history.

The caveat is that the calculation must be done in the time

domain.
EXAMPLE

A substantial fraction of the functionality outlined above

has been implemented into what might be best described

as an advanced prototype dubbed LDYN. A first public ver-

sion, is expected in the coming months. The basic tracking

algorithm is based on the map defined by (5-6). The col-

lective effects are incorporated in a conventional way, as

previously described. The basic capability and performance

of the code (in interactive mode) is best illustrated with an

example involving a complete cycle of the Fermilab Booster

synchrotron. 106 particles are tracked for 20,000 turns; on a

6-core, 3 GHz CPU, the simulation runs in approximately 15

mins. The total beam charge was set to 5.0× 1012e. The left

hand side of Fig. 1 shows the voltage profile for the cycle.

On the right hand-side is a plot of the magnet "laminated

wall" impedance. The latter is accounted for, together with

the space-charge impedance. Fig. 2 shows the beam phase

space distribution at different key moments: injection, cap-

ture, shortly below and above transition and final energy.

The plots on the right-hand side of the phase space display

are from top to bottom: the line densities in azimuth and

energy deviation, the beam induced voltage and the beam

spectrum. Of note is the high induced voltage at transtion,

which reaches over 200kV. Fig. 3 shows the rms bunch size

and bunch emittance evolution during the cycle. The small

initial bump in the emittance plot is due to uncaptured (and

eventually lost) particles. Note that, as expected, while β

varies from 0.71 to 0.97, the emittance remains constant be-

fore transition once the distribution has reached steady-state.

In this simulation, feedback was applied to limit both dipole

and quadrupole oscillations. Transition crossing causes the

rms emittance to nearly double, from an initial value of about

0.015 eV-s (rms) due to filamentation. The core emittance

is on the order of 0.1 eV-s.

Figure 1: Voltage program (blue : total, red: acc.). The peak

voltage is slightly above 1.1 MV.Left: wall impedance (blue:

real, red: imag.).

Figure 2: Phase space distribution. Top to bottom: initial,

after capture, near (below) transition, above transition, final

energy.

Figure 3: Beam moments evolution during a Booster cycle.

Left: rms phase extent. right: rms emittance.
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