
DYNAC: EXTENSIONS, UPDATES, AND UPGRADES
Stephen Molloy∗, Eugene Tanke, European Spallation Source, Lund, Sweden

Abstract
DYNAC [1] is a multi-particle beamline simulation code

suitable for modelling of the motion of protons, heavy ions,

or electrons, moving through linear accelerators and beam

transport lines. In this paper, we document extensions writ-

ten in Python. It will be shown how these Python extensions

add a considerable amount of flexibility to DYNAC, while

maintaining the calculation speeds available from the core

Fortran source. Real-world use-cases are discussed. In addi-

tion, some improvements that have beenmade to the DYNAC

source are reported.

INTRODUCTION
DYNAC is a robust multi-particle simulation code for

single-pass beamlines, with a long history of development,

and users in many accelerator laboratories.

DYNAC operates by reading in a text file containing a list

of commands. The Fortran-based executable reads each of

the lines in turn, and performs the necessary actions. For

example, the command,

QUADRUPO
3.5 -1.34 0.75

will act on the phase-space of the simulated particles in a

0.75 cm aperture radius quadrupole with an effective length

of 3.5 cm, and a pole-tip field strength of -1.34 kG.

Other commands exist for many other element types, as

well as to output phase-space plots, emittance plots, and

many other actions. The DYNAC manual [2] contains a full

description of all possible commands.

The sequential style of data input to DYNAC – that is, that

the DYNAC executable reads and acts on each line of input

in turn – leads to the possibility of manipulating the flow of

data into DYNAC programmatically.

The most recent update to DYNAC included an additional

input flag that can alter the way in which input is provided

to the executable. Instead of an input file that will be opened

and read by the executable, the data may be streamed in via

an operating system ‘pipe’. This simple change opens up an

alternative range of possibilities by allowing a different style

of usage of the DYNAC executable.

DYNAC IN PYTHON
Python is a language that is very widely used in the scien-

tific community, and so is a very good choice for an extension

of DYNAC. A Python wrapper – ‘Pynac’ – has been written

that allows the use of DYNAC from a Python environment.

Pynac is distributed via the Python Package Index using

pip install Pynac.
∗ stephen.molloy@esss.se

An Ephemeral DYNAC Server
The basic method of operation of Pynac is via a Python

class that encapsulates the main sources of information

needed for DYNAC. Then, when DYNAC is required to

compute a result, a DYNAC instance is started as a Python

subprocess. Python can then pipe the various commands

needed by DYNAC into this subprocess, which will then

perform the standard DYNAC operations.

In practice, this is accomplished by the following Python

code,

self.dynacProc = subp.Popen(
[’dynacv6_0’,’--pipe’],
stdin=subp.PIPE,
stdout=subp.PIPE,
stderr=subp.PIPE

)

This calls the ‘dynacv6_0’ executable with the ‘--pipe’
flag to indicate that the input will come from stdin rather

than an input file. If successful, the result will be an object,

self.dynacProc, that behaves very much like a short-lived
DYNAC server. That is, a process that is instantiated as

needed, and only lives as long as it is needed. Data can

be written to the stdin attribute of this process, which will

consume it just as if it came from an input file. This may be

thought of as a type of ephemeral server process.

Note that these low-level operations are hidden from the

user. While the open nature of Python means that a user

can delve down to this level of detail if they want, the Pynac

class is designed to be used at a much higher level.

EXAMPLES
Jupyter notebooks [3] provide a powerful interactive en-

vironment for using Pynac, so the following examples will

be shown as Jupyter notebooks.

Beam Construction
A basic need for almost all modelling codes is to provide

a way for the user to specify the beam parameters at the

input of the transport line. DYNAC provides several ways

to do this, one of which, GEBEAM, allows the user to specify
the Twiss parameters for a beam that is Gaussian in all six

degrees of freedom.

Pynac provides a utility function to construct a GUI in

the Jupyter notebook that allows the user to vary the Twiss

parameters, and immediately see the phase-space plots of the

resulting beam. In addition, the relevant DYNAC & Pynac

commands are also provided so that these can be copied into

the appropriate input file for use in a simulation. This is

shown in figure 1.

THPAB038 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3784Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



Figure 1: Beam construction GUI implemented with Pynac.

Each time the user updates a Twiss parameter, a DYNAC

process is called with the simplest possible input – the rele-

vant GEBEAM command, and a command to output the parti-
cle phase-space. This output is then consumed by Pynac to

generate the Jupyter notebook plots.

Single Run with Plotting
A standard use case of DYNAC is to run a particular input

file, and then immediately view the output plots created

by any plotting commands included in that file. This is

easily accomplished in Pynac using the usual Pynac class
to perform the simulation, and the PynPlt class to generate
the plots expected by experienced DYNAC users.

An example of such a plot is shown in figure 2.

Figure 2: An example of a typical Pynac plot.

Parallel Operation
Since Pynac is pure Python (excepting the Fortran source

in DYNAC), it can make use of the the multithreading and

multiprocessing capabilities in the Python Standard Library.

As a basic (but still useful) example, consider the study of

the effect of quadrupole gradient errors on the growth of the

emittance throughout a linac. This is typically performed

by generating a large number of linacs, each with a different

set of errors, and modelling the dynamics of the beam as it

moves through the lattice. Each of these linac simulations is

completely uncoupled from the others – that is, the results

of a particular simulation are in no way influenced by those

of another. Therefore, this problem can be split between

multiple processing cores, enabling a substantial speed-up

in the simulation time.

Pynac provides a utility function, multiProcessPynac,
to take care of the details of multiprocessing. As input, this

function takes a list of the input files that DYNAC will need

for the simulation (e.g., the command file, field definitions,

etc.), and a function to perform for each of the simulations

(e.g., to apply the random errors, and track the beam). In

addition it needs to be provided with the number of iterations

to run, and the number of processing threads to make use of.

These last two inputs default to 100 and 8 respectively.

Figure 3: Error studies of an ESS linac lattice with random

errors in the quadrupole field.

To demonstrate the operation of the multiprocessing cap-

babilities of Pynac, this function was used in a simulation

of the performance of the ESS linac when subjected to

quadrupole field errors. Particle tracking was done with

1000 macroparticles for 400 error cases, and the results are

shown in the figure 3. Since this calculation was done as a

demonstration of the operation of the multiprocessing capa-

bilities of Pynac, the official lattice was not used. This means

Proceedings of IPAC2017, Copenhagen, Denmark THPAB038

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3785 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



that no interpretations of the physics of the ESS design can

be made from these results.

CODE STRUCTURE
The Pynac source code is licensed with the GPL, and can

be browsed in the GitHub repository [4]. Documentation is

hosted online [5], with automated links to GitHub to keep

the code and documentation aligned. In addition, the testing

is automated in a way that allows users to ensure that their

version of Python is compatible [6].

In order to avoid excessive nesting of imports, the source

consists only of four files (excluding documentation, exam-

ples, the test suite, etc.).

Core.py
This file contains the primary simulation functionality

of Pynac. As can be seen from the foregoing examples,

the two key items in this file are the Pynac class and the
multiProcessPynac function, however the Builder class
is also useful for interactively exploring some of the physics

of a charged particle lattice1.

The Pynac class is instantiated in one of two ways:

1. Providing the name of a DYNAC in-

put file to the constructor, for example,

Pynac(filename=’dynacfile.in’). This will

parse the file into Pynac’s internal format.

2. By supplying a lattice in Pynac’s internal format

(perhaps from another simulation instance) to a

from_lattice class method.

Plotting.py
The primary purpose of this file (containing only one class

– PynPlt) is to duplicate the action of the plotit command
provided by DYNAC. That is, to produce all the plots asked

for in the DYNAC input file.

This functionality will be used mostly when performing

quick simulations. The intent of Pynac is to allow a more

flexible approach to data analysis, and therefore it is more

likely that the user will make use of traditional Python plot-

ting tools, e.g., Matplotlib, Bokeh, Plotly, etc.

DataClass.py & Elements.py
These files contain the definitions of some types used by

Pynac. They should not be thought of as internally defined

types, since it is expected that the user will want to make

use of many of these in order to manipulate their lattice.

For example, the classes defined in Elements.py are the
standard accelerator elements that would be expected to

appear in an accelerator tracking code2.

1 Note that, as of the time of publication of this paper, this class is still in

development.
2 These elements have been authored ‘as needed’, and so currently lags

considerably behind the library of elements available in DYNAC.

DYNAC IMPROVEMENTS
In addition to the aforementioned new --pipe option in

DYNAC R17, which allows to read DYNAC cards from stan-

dard input, a new type code, MHB (Multi-Harmonic Buncher)
has been added. With MHB the motion of particles crossing
a multi-harmonic buncher can be simulated in a thick lens

approximation. It was already possible to do so using the

thin lens approximation. The base frequency and as many

as 4 harmonics can be simulated, whereby the motion of the

particles is calculated with a numerical method akin to the

one used with the CAVNUM type code.
Currently under preparation is the possibility of running

multiple instances of DYNAC at the same time, in view of er-

ror studies. A framework for this has been prepared and suc-

cessfully tested on multi-core Windows and Linux machines.

The framework also works on Macs, but currently not in

multi-core mode. This framework will be made available

alongside the next DYNAC release and is straightforward in

implementation.

CONCLUSION AND OUTLOOK
In conclusion, Pynac is a new development allowing the

use of DYNAC from within a Python environment. There

are still a significant number of capabilities to be developed –

in particular a full suite of Pynac representations of DYNAC

lattice elements – and work is progressing on this. The

intention is to allow the direction of code development to

be strongly influenced by user requests rather than by an

artificial timeline.

Several improvements in DYNAC were also presented,

as well as an announcement of the upcoming multi-core

framework currently under preparation.

REFERENCES
[1] https://dynac.web.cern.ch/dynac/dynac.html

[2] DYNAC V6R17 User Guide, P. Lapostolle, S. Valero, E. Tanke,
http://dynac.web.cern.ch/dynac/beta/dynacb.
html

[3] http://jupyter.org/

[4] https://github.com/se-esss-litterbox/Pynac

[5] http://pynac.readthedocs.io/en/latest

[6] https://travis-ci.org/se-esss-litterbox/Pynac

THPAB038 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3786Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques


