
SYMPLECTIC MULTI-PARTICLE TRACKING USING CUDA∗

Z. Liu1†, J. Qiang‡, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
1also at Key Laboratory of Particle Acceleration Physics and Technology,

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract
The symplectic tracking model can preserve phase space

structure and reduce non-physical effects in long term simu-
lation. Though this model is computationally expensive, it
is very suitable for parallelization and can be accelerated sig-
nificantly by using Graphic Processing Units (GPUs). Using
a single GPU, the code achieves a speedup of more than 400
compared with the time on a single CPU core. It also shows
good scalability on a GPU cluster at Oak Ridge Leadership
Computing Facility. In this paper, we report on the GPU
code implement, the performance test on both single-GPU
andmulti-GPU cluster, and an application of beam dynamics
simulation.

INTRODUCTION
Numerical simulation plays an important role in the beam

dynamics study and design of high intensity accelerators,
where space charge effects dominate. Most simulation codes
at the accelerator community use Particle-In-Cell (PIC)
method as the space charge solver [1–7]. The PIC method is
an efficient algorithm to include self-consistent space charge
effects. However, there are still some arguments that if the
PIC algorithm could keep the symplectic condition during
the particle tracking.
Symplectic integrators were constructed for conserving

the symplectic condition of Hamiltonian systems [8, 9]. Re-
cently, a gridless symplectic particle tracking model was in-
troduced and proved to be effective in serving as symplectic
Poisson solver in long-term simulation [10]. It can effec-
tively reduce the emittance growth associated with numerical
grid heating compared with the PIC algorithm. However,
this model is much slower compared with the PIC method.
Fortunately, it is very suitable for parallelism and can achieve
very good scalability, especially by using the Graphics Pro-
cessing Unit (GPU).
In contrast to CPU computer, one GPU contains several

hundreds or even thousands of cores, as shown in Fig. 1. It
uses high-bandwidth bus (∼200Gb/s) connecting the mem-
ory on chip to the computing cores and is optimized for
parallel calculations, particularly for single instruction mul-
tiple data (SIMD) operations [11]. The Compute Unified
Device Architecture (CUDA) library is a parallel comput-
ing platform and GPU programming model developed by
NVIDIA [12]. It enables dramatic increase of computing
performance by harnessing the power of GPUs. By using
∗ Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231 and the Ministry of Science and Technology of
China under Grant No.2014CB845501.
† zhicongliu@lbl.gov
‡ jqiang@lbl.gov

Figure 1: A schematic plot of CPU and GPU.

the CUDA library, the gridless symplectic multi-particle
tracking code can be speeded up significantly.
In this paper, firstly, the symplectic tracking theory and

the GPU implements are introduced in Section 2. Then, the
performance of the tracking code using CUDA is presented
in Section 3. After that, an application example using this
code is presented in Section 4. Finally, conclusions are
drawn in Section 5.

CODE IMPLEMENTATION
For a 3D bunch, the space charge transfer map in one

dircction (X) direction can be expressed as [10]:

xi(τ) = xi(0)

pxi(τ) = pxi(0) − τ
1
ε0

8
abc

ωκγ0

×

N j∑
j=1

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

(
αl sin(αl xj) sin(βmyj) sin(γnzj)

(α2
l
+ β2

m + γ
2
n)

× cos(αl xi) sin(βmyi) sin(γnzi))

(1)

where αl = lπ
a , βm =

mπ
b , γn =

nπ
c . a, b and c are the

boundary length.
In the GPU implement, we define:

Sl,m,n
j = sin(αl,m,nxj),C

l,m,n
j = cos(αl,m,nxj) (2)

where j is the index of the particles, and l,m and n are
the indices of spectral mode in X, Y, and Z direction. The
trigonometric functions are calculated firstly.
Noticing that in the transfer map 1, the summation by

index j is for every particle, so the sequence for summing
can be changed to save computational complexity. Defining
that:

Philmn ≡

N j∑
j=1

Sl
jS

m
j Sn

j (3)

THPAB027 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3756Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



and if the calculation of Philmn for Nl × Nm × Nn modes is
done first, the transfer map 1 can be rewritten as:

px,i(τ) = px,i(0) − epx,i (4)

epx,i ≡ τ
1
ε0

8
abc

ωκγ0

Nl∑
l=1

Nm∑
m=1

Nn∑
n=1

PhilmnαlCl
i S

m
i Sn

i

(α2
l
+ β2

m + γ
2
n)

(5)

In this way, the computation complexity is reduced from
αN2

p ∗Nmodes to αNp ∗Nmodes , which makes the symplectic
particle tracking algorithm feasible.

The calculation of epi and pushing particles are executed
separated in three directions to achieve high GPU occupancy.
In the subroutine for each direction, a particle takes one
thread. The subroutine of calculating epi has two branches
depending on the problem size. It fully take advantage of the
GPU constant memory, which is used for data not change
within a kernel and specially optimized for broadcast, and
the GPU shared memory, which is a fast memory residing
on chip and can only be access by the threads within a block.

PERFORMANCE
We have done two tests for measuring the efficiency and

scalability of the GPU code. The first one ran the code on a
common home-use GPU and the efficiency is compared with
that running on a CPU core. The second test ran the code
on a GPU cluster, Titan, a hybrid-architecture supercom-
puter located at Oak Ridge Leadership Computing Facility
(OLCF), to show how the speedup change with the number
of GPUs.

Single GPU Speedup
Firstly, the performance of the GPU code is comparedwith

the CPU code. The GPU code runs on the GeForce GTX
1060 6GB (Pascal architecture), with CUDA version 8.0,
while the CPU code runs serially on a single core of AMD
Opteron(tm) Processor 6134. The speedup is calculated by
using the CPU verion runtime divided by the GPU version
runtime. In this measurement, two comparisons are made
separately for only space charge kicker and the entire code,
as shown in Fig. 2. Each line denotes the result of different
number of particles.
The top plot of Fig. 2 shows the speedup of the space

charge kicker with different problem sizes. It meets the
expectation that the larger number of modes, the higher
speedup it can achieve. When the number of modes is small,
the speedup is low because it does relatively few computa-
tion. As the number of modes increasing, the computation
becomes larger and more balanced, which results in a higher
speedup. On the other hand, the particle number affects
the speedup relatively slightly, especially with situation of
large mode number. The reason is that the particle number
exceeds the number of cores on GTX 1060(1280 cores). It
can make fully use of all computing cores at the beginning.

The bottom plot shows the speedup of the total computing
time, including external transfer map, coordinate conversion,
space charge kicker, diagnose, and output. The speedups

æ

æ
æ

æ
æ

æ
æ

æ

à

à à
à

à

à
à

à

ì

ì ì ì

ì ì ì ì

ò

ò ò ò
ò ò ò ò

ô

ô ô ô
ô ô ô ô

8 16 24 32 40 48 56 64
Modes0

100

200

300

400

500
Speedup

æ 10 000

à 20 000

ì 40 000

ò 80 000

ô 160 000

(a) Speed up of the space charge kicker

æ

æ

æ

æ æ

æ æ

æ

à

à

à

à
à

à
à

à

ì

ì

ì
ì

ì ì ì ì

ò

ò

ò
ò

ò
ò ò ò

ô

ô

ô
ô

ô ô ô ô

8 16 24 32 40 48 56 64
Modes0

100

200

300

400

500
Speedup

æ 10 000

à 20 000

ì 40 000

ò 80 000

ô 160 000

(b) Speed up of the total time

Figure 2: Speedup of the symplectic code using a single
GPU.

fall compared with that of only space charge kicker, but the
trend keeps the same.
In general, we achieved a very good speedup. For the

total runtime, the GPU code runs 450 times faster than the
CPU code with a certain size of problem, while if we only
consider the space charge kicker, the maximum speedup
reached 460.

GPU Cluster Speedup - Titan
A strong scaling of the ImpactZ symplectic code was

done on Titan to check how this algorithm performs with
increasing number of GPUs. On the cluster Titan, each
computing node contains one GPU. The way to transfer
data among GPUs is to copy it back to CPU and then to
communicate through Message Passing Interface(MPI). In
the scaling test, we used 16×16×16 modes, which is the
typical configuration in a real simulation. Figure 3 shows
the speedup of the ImpactZ symplectic code running on
different number of nodes compared with that running on a
single node with the given problem size.
As shown at the top plot of Fig. 3, the speedup of space

charge kicker increases almost linearly with the number of
GPUs at the beginning and then reaches a limit gradually.
The linear increasing is due to very small amount of data
exchange, which is a great advantage of this gridless sym-
plectic tracking model. On the other hand, the maximum
speedup it can achieve is mainly limited by particle number.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB027

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3757 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs



1
2
4
8
16
32
64
128

1 2 4 8 16 32 64 128 256 512 1024

Speedup

GPUs

80k
160k
320k
640k

(a) speedup of space charge kicker

1
2
4
8
16
32
64
128

1 2 4 8 16 32 64 128 256 512 1024

SpeedUp

GPUs

80k
160k
320k
640k

(b) speedup of total time

Figure 3: Strong scaling of symplectic code at GPU cluster.

Taking the situation of 160k particles using 64 nodes for ex-
ample, with each GPU containing 2688 cores, totally we use
64×2688≈172k cores. It is even more than particle number.
As a result, the speedup would not be linear as before.

The bottom plot shows the speedup of total time, including
the transfer map, conversion from Z coordinates to T coor-
dinates, diagnose, and output. The functions listed above
are also parallelized, but it’s more difficult to achieve a high
parallelism due to its intrinsic less computation demanding.
So the speedup of total time goes down a little compared
with that of only space charge kicker.

APPLICATION SIMULATION
Several application simulations had been done using a

periodic focusing channel and different currents using the
GPU symplectic code. We set the phase advance per turn
at 0 current to be 2.3979. With increasing current, the tune
will be depressed and cross the third order resonance line
of 2.3333 around 0.6 A. There is a sextupole at the end of
each turn to excite the resonance.
Figure 4 shows the emittance growth with different cur-

rents. The emittance almost keeps constant with 0.1A and
0.2A, where the tune is about 2.40. However, it keeps grow-
ing with 0.4A, 0.6A, and 0.8A, where the tune is depressed
below 2.33. It’s shown that the emittance growth is due to
the space charge driving 3rd order resonance.
The Poincaré map of the phase space coordinates of par-

ticles near 2.3333 is plotted in Fig. 5. In this contour plot,
dark means large particle density. Different plots are from
the results of particles starting from different initial position.
Drived by the space charge force, the Poincaré map would be
distorted and shaped into a triangle. The particles affected
by resonance would gradually move towards outside. Finally,
it would become part of beam halo and lost.

CONCLUSION
A gridless symplectic particle tracking model was im-

plemented on GPUs using the CUDA library. The gridless
tracking algorithm has the advantage to keep the symplectic
condition and effectively reduce the noise driving emittance
growth. We achieved a maximum speedup of more than 450
using a home-use GPU card GTX 1060. This algorithm also
shows good strong scalability, which was tested on the GPU
cluster Titan. Several application simulations were done
using this code with different currents through a periodic fo-
cusing channel. No emittance growth appears when the tune
is far away from the resonance line, while it keeps growing
when the tune approaches it. In the future study, we will
continue to extend this code and to compare the efficiency
of this code with different architecture. We also would like
to port the PIC model onto GPU and compare it with the
symplectic gridless algorithm.

ACKNOWLEDGMENTS
One of the author, Zhicong Liu, would like to extend

his thanks for the financial support from China Scholarship
Council (CSC, File No. 201604910876). We have used com-
puting resources at the Oak Ridge Leadership Computing
Facility (OLCF).

REFERENCES
[1] C. K. Birdsall, “Particle-in-cell charged-particle simulations,

plus monte carlo collisions with neutral atoms, pic-mcc,”
IEEE Transactions on Plasma Science, vol. 19, pp. 65–85,
Apr 1991.

0 5000 10000 15000 20000
z drection (m)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

e
m

it
.A

v
g
.g

ro
w

th
 (

%
)

0.1A

0.2A

0.4A

0.6A

0.8A

Figure 4: Emittance growth at different current.

4 2 0 2 4
x (mm)

6

4

2

0

2

4

6

px
 (

m
ra

d)
 

4 2 0 2 4
x (mm)

6
4
2
0
2
4
6

px
 (

m
ra

d)
 

Figure 5: Poincaré map of the particles affected by 3rd order
resonance.

THPAB027 Proceedings of IPAC2017, Copenhagen, Denmark

ISBN 978-3-95450-182-3
3758Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques



[2] A. Friedman, D. P. Grote, and I. Haber, “Three-dimensional
particle simulation of heavy-ion fusion beams,” Physics of
Fluids B: Plasma Physics, vol. 4, no. 7, pp. 2203–2210, 1992.

[3] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk, “An object-
oriented parallel particle-in-cell code for beam dynamics
simulation in linear accelerators,” Journal of Computational
Physics, vol. 163, no. 2, pp. 434 – 451, 2000.

[4] J. Qiang, M. A. Furman, and R. D. Ryne, “A parallel particle-
in-cell model for beam–beam interaction in high energy ring
colliders,” Journal of Computational Physics, vol. 198, no. 1,
pp. 278–294, 2004.

[5] J. Amundson, P. Spentzouris, J. Qiang, and R. Ryne, “Syn-
ergia: An accelerator modeling tool with 3-d space charge,”
Journal of Computational Physics, vol. 211, no. 1, pp. 229 –
248, 2006.

[6] D. Uriot and N. Pichoff, “Tracewin,” CEA Saclay, June, 2014.
[7] Y. K. Batygin, “Particle-in-cell code beampath for beam dy-

namics simulations in linear accelerators and beamlines,” Nu-

clear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated
Equipment, vol. 539, no. 3, pp. 455–489, 2005.

[8] P. Channell and C. Scovel, “Symplectic integration of hamil-
tonian systems,” Nonlinearity, vol. 3, no. 2, p. 231, 1990.

[9] H. Yoshida, “Construction of higher order symplectic inte-
grators,” Physics Letters A, vol. 150, no. 5-7, pp. 262–268,
1990.

[10] J. Qiang, “Symplectic multiparticle tracking model for self-
consistent space-charge simulation,” Phys. Rev. Accel. Beams,
vol. 20, p. 014203, Jan 2017.

[11] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, “Gpu computing,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 879–899, 2008.

[12] C. Nvidia, “Programming guide,” 2010.

Proceedings of IPAC2017, Copenhagen, Denmark THPAB027

05 Beam Dynamics and Electromagnetic Fields
D11 Code Developments and Simulation Techniques

ISBN 978-3-95450-182-3
3759 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs


