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Abstract
The simulation code DELPHI is an analytic Vlasov solver

which allows to evaluate the beam transverse stability with
respect to impedance effects. It allows to perform fast scans
over parameters such as chromaticity, damper gain or beam
intensity for a given impedance model and particle distribu-
tion.

In order to improve the simulation code, new longitudinal
particle distributions have been implemented. The simula-
tions results obtained with these distributions are compared
to theoretical predictions. An additional post-processing of
DELPHI’s output has also been implemented, allowing to
reconstruct the signal seen by head-tail stripline monitors,
in particular in presence of bunch-by-bunch damper. The re-
sults are compared to theoretical models, to PyHEADTAIL
simulations and to measurements performed in the LHC.

INTRODUCTION
Vlasov’s Equation

Vlasov’s equation describes the conservation of the local
phase space with respect to time

dψ
dt
= 0 (1)

where ψ = ψ (s, Jz, θz, τ, φ) is the phase space distribution
density with s = vt the longitudinal position along the
accelerator orbit, (Jz, θz) the horizontal or vertical plane
action-angle coordinates, (τ, φ) the polar coordinates for the
longitudinal phase space [1].

Perturbation Formalism
To treat the stability problem, we assume that a small

perturbation ψ1 of the phase space density develops on top
of the unperturbed distribution ψ0. This mode develops
along time at a complex frequency Ω = Qcω0, with ω0
the beam angular revolution frequency and Qc the complex
tune. The distribution ψ can be decomposed in transverse
and longitudinal parts [1, 2]

ψ = ψ0 + ψ1

= f0g0 + f1g1 exp ( jΩt)
(2)

where f0 and f1 are functions of the transverse coordinates
and g0 and g1 are functions of the longitudinal coordinates.
DELPHI uses a decomposition over Laguerre polynomials
of the functions g0 and g1 from Eq. (2). The treatment
of Vlasov’s equation leads to an eigensystem which once
solved furnishes eigenvalues and eigenvectors. The eigen-
values give informations on the azimuthal and radial modes
∗ david.amorim@cern.ch

frequency shifts and their respective growth rates. The eigen-
vectors allow to reconstruct the longitudinal perturbation g1.

IMPLEMENTATION OF NEW
LONGITUDINAL DISTRIBUTION

Principle and New Longitudinal Distributions Im-
plemented
In DELPHI the unperturbed longitudinal particle distri-

bution g0 is written as a finite sum of Laguerre polynomi-
als [2,3]. This allows to implement multiple distributions to
better fit the experimental beam profile or to compare simu-
lations results with examples developed in the literature.
Only the Gaussian distribution was originally imple-

mented in DELPHI. Three other distributions have been
implemented: the parabolic line, parabolic amplitude, and
an approximated uniform distribution. Their respective equa-
tions are given in [4]. The uniform distribution should be
a step function g0 (τ) =

4
πτ2

b

for τ ∈
[
0; τb

2
[
and where τb

is full bunch length in seconds. In DELPHI it has been
approximated by a sigmoid shaped function

g0 (τ) =
4
πτ2

b

1

1 + exp
(

25
τb

(
τ − τb

2
) ) , τ ∈ [0;+∞[ . (3)

This approximation is made to avoid the discontinuity
of the uniform distribution that would lead to convergence
issues when decomposing over Laguerre polynomials.

The resulting longitudinal distributions decomposed over
Laguerre polynomials are showed in Fig. 1, alongside the
initial longitudinal distribution.

Comparison of DELPHI’s Results with Analytical
Predictions

In order to check that the new distributions are correctly
implemented, a comparison of DELPHI’s results is made
with analytical formulas. A broadband resonator impedance
model ( fres = 1 GHz, Rs = 10 MΩm−1 and Q = 1) is used
and beam stability is computed in the horizontal plane. A
scan in bunch intensity is performed for a fixed chromaticity
of Q′ = −3 [5].
The real part of the most unstable mode frequency shift

is plotted in Fig. 2 where the dashed line shows the linear
fits performed on the data and their respective equations.
These results are compared to analytical formulas from

[6], which show that the tuneshift ∆Qx caused by a general
impedance at zero chromaticity and for a certain intensity is
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Figure 1: Longitudinal particle distributions as a function
of length in ns. Four distributions are showed: parabolic
line, parabolic amplitude, Gaussian and approximated uni-
form. The solid line shows the distribution from [4]. The
dashed line show the distribution after the decomposition
over Laguerre polynomials.
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Figure 2: Real part of the most unstable mode frequency
shift, normalised by the synchrotron tune, as a function of
single bunch intensity (in protons per bunch).

proportional to

∆Qx ∝

∫ +∞
−∞

g0 (τ)
2 dτ(∫ +∞

−∞
g0 (τ) dτ

)2 (4)

Equation 4 yields for the various distributions:

∆Qx |gaussian ∝
4

π
1
2 τb

(5)

∆Qx |parabolic amplitude ∝
12
5τb

(6)

∆Qx |parabolic line ∝
64

3π2τb
(7)

∆Qx |uniform ∝
2
τb

(8)

First, the three following ratios of the linear fits slopes re-
ported in Fig. 2 are performed: Uniform/Gaussian, Parabolic
amplitude/Gaussian and Parabolic line/Gaussian.

These three ratios are compared to the corresponding one
obtained from analytical calculations i.e the ratios of equa-
tions (8)/(5), (6)/(5) and (7)/(5). The results are reported in
Table 1. An agreement within 10% is reached between the
simulations and the analytical predictions. Some differences
could be expected as we used a non-zero chromaticity for
the simulations to ensure that mode 0 is the most unstable
at all intensities and an approximation of the longitudinal
distributions by using a decomposition over Laguerre poly-
nomials.

Table 1: Tune shifts ratios for different longitudinal distribu-
tions obtained with simulations and analytical calculations.

Ratio Simulations Analytical
calculations

Uniform/Gauss. 0.816 0.886
Parab. amp./Gauss. 1.17 1.06
Parab. line/Gauss. 0.971 0.958

Check of DELPHI Results for the Uniform Longi-
tudinal Distribution Case
A second verification on the implementation of the uni-

form longitudinal distribution in DELPHI was done. A scan
in bunch intensity was performed and the real part of all the
modes frequency shifts was compared to calculations made
following Laclare formalism [4]. A first set of DELPHI sim-
ulations was done with a Gaussian longitudinal distribution
and a second set of simulations was done with an uniform
distribution. The impedance model used in these simula-
tions is a broad-band resonator with fres = 1 × 1015 Hz,
Rs = 10 MΩm−1 and Q = 1 in order to approximate a
purely inductive impedance [7].
Figure 3 shows the resulting mode frequency shifts as a

function of single bunch intensity. In these plots the modes
frequency shifts are normalised to the synchrotron tune Qs

and the bunch intensity is normalised to the machine’s pa-
rameters such as

∆Qcoh = Nb
βe2

4πγm0cQx0τbωs
Ze f f (9)
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with e and m0 the proton charge and mass, β the particle
speed in units of c, γ the Lorentz factor, Nb the number of
particles per bunch, Qx0 the unperturbed horizontal tune, τb
the full bunch length (in seconds), ωs the synchrtron angu-
lar revolution frequency and Ze f f the machine’s effective
impedance [7]. In both plots the black points represent the
results obtained with Laclare formalism for an uniform distri-
bution and the red points the results obtained with DELPHI.

Figure 3 shows that the uniform distribution (red points) is
closer to the results obtained with Laclare formalism (black).
The difference with the Gaussian distribution (green) is vis-
ible on modes 0, −1 and −2 where the shifts caused by a
Gaussian distribution are slightly different from the ones
obtained with an uniform distribution.

Figure 3: Real part of the modes frequency shifts obtained
with DELPHI using a Gaussian longitudinal distribution
(green), an uniform distribution (red), compared to Laclare
formalism (uniform distribution, black) as a function of nor-
malised beam intensity, for a constant inductive impedance.
Results are normalised by the synchrotron tune.

TREATMENT OF THE EIGENVECTORS
In DELPHI only the eigenvalues were treated in the sta-

bility studies. The signal observed with stripline pickups
can be obtained from the eigenvectors by reconstructing the
transverse perturbation g1 [1, 4, 5]. The reconstruction of
the signal will allow to compare DELPHI results with the
head-tail signals observed in the machines and to simulations
from the tracking code PyHEADTAIL [8].

Simulations with the LHC Impedance Model and
Comparison to PyHEADTAIL and Observations

Coherent instabilities are sometimes observed in the LHC,
during machine development or physics time [9]. DELPHI
simulations performed with the LHC impedance model
[10] are compared to tracking simulations performed with

Figure 4: Q′ = 9, measurements from the LHC head-tail
monitor signal (top), PyHEADTAIL simulations (middle)
and DELPHI simulations (bottom).

Figure 5: Q′ = 15, measurements from the LHC head-tail
monitor signal (top), PyHEADTAIL simulations (middle)
and DELPHI simulations (bottom).

PyHEADTAIL and with head-tail monitor [11] observa-
tions from the machine. Two observations performed during
machine development time are examined: Fig. 4 shows an
instability with two nodes (head-tail mode 2) observed on
the 16th of April, 2016 and Fig. 5 shows an instability with
three nodes (head-tail mode 3) observed on the 7th of Oc-
tober, 2016. These instabilities were observed on beam 1
horizontal plane with a chromaticity of Q′ = 9 and Q′ = 15
respectively and with the transverse damper active (50 turns
gain). Figures 4 and 5 show that DELPHI reconstruction of
the head-tail monitor signal is coherent with PyHEADTAIL
results and with observations.
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CONCLUSIONS
New longitudinal distributions have been implemented in

DELPHI. Their implementation was checked with analytical
formulas and simulations and will allow to better reproduce
the observations made in the CERN accelerator complex.
The treatment of the eigenvectors output from DELPHI

has also been completed and will allow to compare the mea-
sured LHC head-tail monitor signals to DELPHI simula-
tions.
Further developments will take place on DELPHI to in-

clude new physics such as second order chromaticity or di-
rect space charge. These improvements will allow to further
improve the agreement between simulations and measure-
ments in the LHC and its injectors.
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