
WAVE PROPAGATION IN A FRACTAL WAVE GUIDE
A. K. Bhattacharyya∗, J. Ögren, M. Holz, V. Ziemann

Uppsala University, Uppsala, Sweden

Abstract
We analyze the propagation of electromagnetic waves

in a wave guide that has the shape of Koch’s snowflake, a

well-known fractal.

INTRODUCTION
The investigation of Radio Frequency wave propagation in

wave guides with rough surfaces has been carried out since

a long time by considering random boundary conditions and

solving the Maxwell’s equations in the statistical sense of

the boundaries [1–4]. The effect of a naturally rough surface

would be that the perimeter is infinite [5]. In this paper we

emulate the roughness of the perimeter by means of a frac-

tal, the Koch’s snowflake, which has increasing perimeter

through the generations but a finite cross-sectional area. This

allows us to put a controlled rough surface on the waveg-

uide with each progressive generation of the fractal and

systematically investigate the effect of “roughness”. Since

the snowflake has many corners into which modes can enter,

we expect that there are more higher modes compared to

to a smoother waveguide such as a circular one. Therefore

we try to address the question of how much faster the num-

ber of higher modes grows as a function of the order of the

snowflake. Since the fractal snowflake is such a peculiar

shape with asymptotically finite area, but infinitely growing

perimeter as a function of order, we explore different ways

to characterize this growth.

We start with the source free Maxwell’s equations in vac-

uum �∇ × �E = −μ∂ �H
∂t and �∇ × �H = ε ∂ �E∂t and derive the wave

equations for the cylindrical co-ordinate system. Then as-

suming the harmonic propagation of the wave in z-direction
with frequency ω and propagation constant β and looking
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Figure 1: Cross-section of a snowflake waveguide with inlaid

mesh for PDE solution.

for the TM modes we arrive at the second-order partial dif-

ferential equation (PDE)

(
∂2

∂x2
+
∂2

∂y2

)
Ez =

(
β2 − k2

)
Ez (1)

where k2 = ω2/c2 is the wave number, c is the speed of
light and Ez is the electric field in the longitudinal direction.

Using the cylindrical co-ordinate system for the circular

wave guide and the separation of variables the eq. (1) can

be separated into two decoupled second order differential

equations which can be further represented in matrix form

as a system of 4 first order differential equations. The eigen-

values of this system, coupled with the boundary condition

Ez = 0 at radius, r , of the circular waveguide, will produce
the dispersion relation for the circular waveguide as shown

in eq. (2)

ω2

c2
− β2 =

p2nm
r2

(2)

where pnm is the m-th root of the n-th Bessel function Jn(x).
The number of eigenmodes for a circular waveguide is thus

the total number of all pnm that stays below a certain value.

The circular waveguide forms a good starting point as it has

no corners. The modes thus form a base line as the problem

of modes that fill up corners does not arise in this case. The

snowflake, however, has lots of corners.

Figure 2: The first resonant mode of a snowflake waveguide

with increasing generation.
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Figure 3: The eigenvalues and the fit parameter with

snowflake generations with constant perimeter.
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Figure 4: The dispersion relation of waveguide with increas-

ing generation of the Koch’s snowflake as cross-section with

constant perimeter.

KOCH’S SNOWFLAKE WAVEGUIDE
Changing from the circular wave guide to the one with

the Koch’s snowflake as the cross-section keeps eq. (1) and

the rest of the procedure the same, but changes the bound-

ary conditions. The cross-section and the inlaid mesh to

solve the eigenvalue problem are shown in Fig. 1. The first

resonant mode for the same is shown in Fig. 2. We first inves-

tigate the snowflake first by keeping the perimeter constant

and next keeping the area constant through the snowflake

generations.

Constant Perimeter
The perimeter is kept equal to that of the circular wave-

guide used for reference and is kept constant by adjusting the

length of the sides of the starting triangle. The eigenvalues

of the solution of the corresponding PDE problem is shown

on the left in Fig. 3 while the dispersion relation obtained

is shown in Fig. 4. Since the growth of the eigenvalues in

Fig. 3 in double-logarithmic presentation is rather linear we

use the following parameterization for the curves

N
(
<

f
f0

)
∝

(
f
f0

)2χ
(3)

where N is the cumulative density distribution function of the

number of eigenmodes with a cutoff frequency smaller than

f . Here we normalize by the fundamental mode frequency
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Figure 5: The eigenvalues and fit parameter for Koch’s

snowflake with cross-section of constant area.

2 4 6 8 10
F(GHz)

0

20

40

60

80

100

120

140

160

180

200

Pr
op

ag
at

io
n 

co
ns

ta
nt

 

Koch 1
Koch 2
Koch 3
Koch 4
Koch 5
Koch 6

Figure 6: The dispersion relation of waveguide with increas-

ing generation of the Koch’s snowflake as cross-section of

constant area.

f0. The values of the fit parameter χ are shown on the right
of Fig. 3.

Constant Area
The cross-sectional area is kept equal to that of the cir-

cular waveguide used for reference and is kept constant by

adjusting the length of the sides of the starting triangle. The

eigenvalues of the solution of the corresponding problem

is shown on the left of Fig. 5 while the dispersion relation

obtained is shown in Fig. 6. We do a similar fit as eq. (3) for

this case as well and the fitted parameters are plotted on the

right of Fig. 5.

Comparing Fig. 3 and Fig. 5 we can see that the change of

eigenvalues is larger for the case of the constant perimeter

compared to that of the constant area. Also from Fig. 4 and 6

we see the difference in behavior of the fit parameter for the

two cases. While the parameter decreases for the case of the

constant perimeter, it is seen to saturate to a value of 1.168
for the case of the constant area.

Cutoff with First Mode Constant
Finally we investigate how the number eigenvalues and

thus the modes below a given cutoff frequency develops

when keeping the frequency of the fundamental mode con-

stant. Basically we always divide the eigenvalues by the first

one. The resulting plot is shown on the top of Fig. 7. Again

we see an apparent linear relationship that allows us to deter-
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Figure 7: The number of eigenvalues below a given cutoff

versus the cutoff while keeping the fundamental mode cutoff

frequency fixed is shown on the top and the fit parameter χ
on the bottom.

mine the exponent χ which we show on the bottom in Fig. 7.

For comparison we also added the eigenvalue spectrum for

the circular waveguide as a red line in both plots.

We observe that the slope of the curves for the Koch

snowflake is always bigger than that of the circular waveg-

uide indicating that there aremoremodes that can ’creep into’

the many corners of the snowflake, especially at higher fre-

quencies. The snowflake becomes overmoded more quickly

compared to a circular waveguide and the exponent χ serves
as a parameter to quantify the ’speed’, by which it becomes

overmoded.

In this context it is instructive to compare the arbitrar-

ily chosen eigenmode number 70 for a a Koch snowflake

of order 6 and that of a circular waveguide. We show the

corresponding modes in Fig. 8 where we observe that the

mode for the snowflake really occupies the corners of the

snowflake.

CONCLUSION
By numerically investigating the cumulative density dis-

tribution function N(< f / f0) of the snowflake and a circular
waveguide for comparison we found a useful measure to

explore and quantify the speed by which the waveguide be-

comes overmoded.

It should be noted that during the first generations of the

fractal the change of shape is large enough to be considered

a dent, rather than roughness. While a random roughness

will keep the cross-sectional area constant, a dent will keep

Figure 8: Comparing mode number 70 for a Koch snowflake

of order 6 (top) and of a circular waveguide (bottom). The

modes ’creeping into’ the corners are clearly visible.

the perimeter constant while the area will change. From

the investigation we can see that the change in dispersion

relation is larger for the constant perimeter case (dent) than

the constant area case. This points to the idea, that these two

cases in conjunction may be useful to investigate and model

the roughness of waveguides.
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